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REPORT ORGANIZATION

VOYAGER PHASE B FINAL REPORT

several volumes.

Volume I

Volume II

Volume III

Volume IV

Volume V

Volume VI

The results of the Phase B Voyager Flight Capsule study are organized into

these are:

Summary

Capsule Bus System

Surface Laboratory System

Entry Science Package

System Interfaces

Implementation

This volume, Volume III, describes the McDonnell Douglas preferred design for

_^_,,=¢'_ou_ T_o_y ..........._y=_mIt _ _rran_ed_ in 5 Darts.. A through E, and bound in

8 separate documents, as noted below.

Part A Preferred Design Concept

Part B Alternatives, Analyses, Selection

Part C Subsystem Functional Descriptions

Part D

Part E

Operational Support Equipment

Reliability

i document

3 documents, Parts BI,

B 2 and B3

2 documents, Parts C I

and C 2

i document

i document

In order to assist the reader in finding specific material relating to the

Surface Laboratory System, Figure 1 cross indexes broadly selected subject matter,

at the system and subsystem level, through all volumes.
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SECTION 5

SUBSYSTEM ANALYSIS

Subsystem analysis has been a major element of our preferred design selection.

In addition to the subsystem analysis to support the systems studies described in

Section 4, there have been two types of studies of the subsystems themselves. First,

trade studies to determine the preferred subsystem approach from among several can-

didates were conducted. Second, analyses to size and optimize the subsystem were

performed. The preferred subsystem configuration is the one that yields an optimum

Surface Laboratory System. To assure consistent judgement at every step of the

analysis, the system-oriented analytical procedure described in Section 1 has been

used in the subsystem analyses. The selection criteria which we used are:

a. Probability of Mission Success

b. System Performance

c. Development Risk

d. Versatility

e. Cost

In our Phase B effort, the selection from alternate concepts, subsystems, and

components has been conducted within technical disciplines but with extensive

interdisciplinary coordination. For example, to achieve a Surface Laboratory

configuration, repetitive refinements between configuration, thermal control,

power, science and telecommunication took place in order to derive the preferred

design for the Surface Laboratory.

The description of the subsystems and the alternatives for each selection

has been made as comprehensive as practicable. Where alternatives were of

nearly equal value, insofar as was possible, they have been given similar treat-

ment. Emphasis has been placed on the rationale associated with choosing the

preferred concept; i.e., how the selected concept best matched the stated require-

ments.

In the descriptions of the studies, certain subsystems (telecommunications,

science, and thermal control) received particularly heavy emphasis. In the cases

of telecommunications and science, this was due to the complexity of the tasks

these subsystems are required to perform. Thermal control required particular em-

phasis because of its profound effect on the entire Surface Laboratory.
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5.1 ELECTRICAL POWER SUBSYSTEM - Various studies were performed in formulating the

electrical power subsystem for the 1973 VOYAGER Surface Laboratory. The investi-

gation, analyses, and conclusions leading to the selection of a preferred approach

to the electrical power subsystem are briefly described herein.

5.1.1 Summary - Four trade studies were performed in support of the SL electrical

power subsystem. The major study was the evaluation of power source alternatives

resulting in the selection of a battery system. The other three studies, battery

charging method, power grounding method, and power conditioning method, were pre-

dicated on the selection of the power source. The float charge method of battery

charging was selected to enhance battery performance0 A single ground point was

selected to provide assurance of electromagnetic compatibility on future missions.

The decentralized power conditioning system was selected to provide adequate

flexibility and minimize electromagnetic interference.

5.1.2 Power Source Study - Three criteria are required of the electrical power

system: sustained electrical power output of 290 watts, peak electrical power

output of 338 watts, and electrical capacity of 4700 watt-hours (4450 watt-hours

for equipment plus 6% distribution loss). A power profile for the baseline mis-

sion is shown in Figure 5.1-1. Due to battery internal losses, 4700watt-hours of

useable electrical energy output produce 5400 watt-hours of thermal energy dis-

sipation. An additional 3900 watt-hours of thermal energy is required for thermal

contingency. This energy may be produced from an electrical, radioisotope, or

chemical energy source, or from some combination of these sources. By the thermal

study of Section 5.8, the thermal energy contingency is supplied by the electrical

power source to provide control of the heat production, and to provide mission

extension should the energy contingency not be required for thermal control. For

a detailed discussion of the thermal control study, see Section 5.8.

5.1.2.1 Alternate Approaches - Candidate power sources to provide the electrical

power and energy requirements and the thermal energy requirement of the Surface

Laboratory are: Fuel Cells, Battery, Radioisotope Thermoelectric Generator (RTG),

RTG with Battery, and Solar Cells with Battery. The following paragraphs discuss

the salient features of each power source candidate.

Solar Cell-Battery - Blowing dust, wind gusts, and continuous overcast present

REPORT F694•VOLUME III • PART B •31AUGUST 1967
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an environment hostile to the effective operation of solar cell panels. The actual

extent and probability of these dust, wind, and cloud conditions cannot be ade-

quately defined for the initial VOYAGER mission. Therefore, any solar cell system

requires a battery power source of sufficient size to complete the basic mission

without a contribution from the solar cells.

To provide the 4700 watt hours required by the SL electrical equipment over

the 28 hour mission baseline period requires a tracking array area of 198 square

feet for 20 ° N latitude and an area of 241 square feet for 40 ° S latitude with the

Sun at 15 ° N latitude. These area figures do not take into account the electrical

system inefficiencies to charge batteries. The solar cell area requirement signi-

ficantly increases for a fixed array, and at 40 ° S latitude a fixed array, with its

normal perpendicular to a local slope at 34 ° away from the sun, produces no output.

These area requirements are incompatible with the 1973 VOYAGER spacecraft.

The area requirement and auxiliary battery requirement for continuous cloud

cover, precludes the use of solar cell arrays as the power source for the initial

VOYAGER mission. However, should the environment prove favorable and degradation

reasonable, solar cells may present an excellent approach for mission extension

applications.

Fuel Cell - The advantages, disadvantages, and other significant factors of

fuel cell power sources are summarized in Figure 5.1-2. The major factors in-

fluencing a fuel cell selection are weight, sterilization, and local contamination

of Martian environment.

There are three major companies in the fuel cell field: General Electric,

Pratt and Whitney, and Allis-Chalmers. Each of these companies uses a different

approach in the construction of the fuel cell. The Genral Electric ion exchange

membrane type fuel cell would probably not be suited for this application, since

the membranes employed are sensitive to elevated temperatures and probably would

be damaged by sterilization. The Pratt and Whitney approach for 1.5 kilowatt

units utilizes highly concentrated potassium hydroxide and operates at 400°F.

Therefore, this fuel cell stack is certainly capable of being sterilized. The

Allis-Chalmers approach, and the Pratt and Whitney approach for low power units,

employ capillary asbestos membranes, and the cells operate at approximately 200°F

with limited performance at 250=F. The manufacturers indicate that the basic stack

components should not be affected by the sterilization temperature, and therefore

are potentially sterilizable. All of the fuel cells employ auxiliary equipment,

valves, regulators, and water removal systems that would have to be evaluated

REPORT F694, VOLUME III • PART B • 31 AUGUST 1967

MCDONNELL A,gTRONAUTICS

5.1-3



I

I

I
I

I
I

I

I
I
I
I

I
I

I
I

I
I

I

I

FUEL CELL POWER SOURCE CHARACTERISTICS

ADVANTAGES

Lowest Weight for Short Missions

(4-30 KWH)

Heat Source for Cold Environment

Non-Magnetic

Excellent Reliability

DISADVANTAGES

Limited Power Output Fixed by

Design Size

Sterilization Not Demonstrated

Environment Contamination

by Purge Gases

Bulky Fuel Storage

Alternate Power Source

Required During Transit

OTHER FACTORS

Requires High Pressure

Gas Storage

Requires Minimum

Operating Level

Moderate Heat Generation

Negl.igible Gas Leakage

Moderately Expensive

Reasonable Development

Requirement
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for sterilizable materials. Since a long transit period is involved, the reactants

hydrogen and oxygen would necessarily have to be stored as compressed gases as

opposed to cryogenic storage that is currently used on short duration missions.

The use of compressed gas as the fuel and oxidant reduce the energy density capa-

bilities of the unit. The Allis-Chalmers approach is considered the most favorable

for use on the VOYAGER program and is therefore the basis for comparison.

The conceptual approach for the fuel cell system would be spherical pressurized

hydrogen and oxygen gas tanks that would supply the reacting gases, through high

pressure regulators, into the fuel cell input regulator. The initial pressure in

the tanks would be 3000 psi and the pressure regulators would reduce this to appro-

ximately 150 psi at the input to the fuel cell unit regulators. The fuel cell

regulators would provide the required cell matrix pressure. During transit the gas

pressure storage vessels would be sealed, and an explosive device would be used

to break a frangible diaphragm valve to initiate fuel cell operation. With this

system there is no reactant loss during the transit phase. The regulators would

automatically supply the reacting gases to the fuel cell stack as the load demands

and maintain the stack pressure throughout the entire operating life. A typical

fuel cell system is shown in Figure 5.1-3.

For the landed requirements, the fuel cell system would require a water

storage tank to accept the reaction product water as the cell performs, to avoid

flooding and consequent degradation in performance of the cell stack. Another

approach would be to vent the water, as it is formed, through a pressure relief

valve to the low pressure ambient on the Mars surface, and allow evaporation into

the atmosphere. However, venting to the Mars atmosphere is considered objectionable

to the mission requirements, and therefore is rejected.

A fuel cell system consisting of storage tanks, pressure regulators, fuel

cell stack, and water removal devices is more complicated than a primary type

battery, and this must be considered in selection of the power source. The con-

cept of a capillary type fuel cell utilizing asbestos matrix with stored pressurized

reactant gases simplifies many of the complexities of the earlier fuel cells. The

28 hours of the baseline mission is not a very rigorous application. Since the

fuel cell is of module design, block redundancy, at only moderate weight penalties,

is utilized for the entire cell stack. An actual reliability level cannot be

ascribed to the system since insufficient test data is available, and the mission

is complicated by sterilization.
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The major criteria and considerations for the cell design is its potential

sterilization. Capillary type fuel cells using an asbestos matrix can be con-

structed of components that are not affected by sterilization temperatures of

275°F. No major problems should be encountered in obtaining auxiliary components

that are sterilizable. The reactant tankage weight allowance takes into considera-

tion the pressure rise as a result of sealed gas storage at 3000 psia at 90°F and

the subsequent subjection to a 275 ° sterilization temperature. A burst pressure

safety factor of 2.22 is used at 90°F and reduces to 1.5 at 275°F.

The fuel cell is the lowest weight power source for a 4 to 30 kilowatt-hour

energy requirement. The fuel, fuel storage tanks, and product tank are the vari-

able weight dependent upon the energy requirement. Gas storage at 3000 psi in

titanium tanks is used for comparing power sources. Light weight, aluminum

lined, filament spun tanks will reduce the tankage weight by about 30 percent.

This lighter weight tank design increases the fuel cell weight advantage such that

it is the lowest weight system for a 3.5 to 45 kilowatt-hour energy requirement.

In order to obtain satisfactory performance from the fuel cell, the stack

should be maintained at a temperature from 190 ° to 220°F. This is not considered

a major problem as integration of an RTG imposes more severe thermal problems.

The cooling requirements of the fuel cell system would be accomplished by the

integral Surface Laboratory thermal control system. Heat pipes would be utilized

to direct the fuel cell heat into the Surface Laboratory during cold periods.

During warm periods, other heat pipes would direct the heat to external surface

radiators. No weight penalty is taken into account for this heat transfer system

in the fuel cell weight figure as no significant weight change is anticipated. For

a detailed discussion of the thermal control problem, see Section 5.8.5.2.

Another fuel cell system is the lithium-clorine power source. It currently is

quoted as offering a significant (2:1) weight advantage over the hydrogen-oxygen

fuel cell system. For this reason it appears an attractive alternative, and the

system is inherently sterilizable due to operating temperature of 650°C. Presently,

however, only limited laboratory data is available, and no flight proven system

has been developed. Many problems are yet to be solved including startup failure

modes, self discharging after activation, and the effect of clorine on storage

vessels at sterilization temperature or for long durations. With this system

still in the initial development stage, it is impractical to base a 1973 VOYAGER

mission upon this technology.

Battery - The advantages, disadvantages, and other factors for a battery power

source are summarized in Figure 5.1-4. The major factors influencing a battery

5.1-7
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BATTERY POWER SOURCE CHARACTERISTICS

ADVAN TAGE S DISADVAN TAGES

Minimum Volume

Minimum Dollar Cost

Very High Peak Power

Capability

Low Heat Generation at

High Power Output

No Effect on Environment

Simple Electrical System

Heavy System for over 5 kwh Capacity

Sterilization Development Required

Limited to Energy Capacity Design Size

Capacity Loss on Wet Stand

OTHER FACTORS

Acceptable Reliability

Ster i l ization Fea s ibi l ity
Dem on strated

Poor Voltage Regulation

Negligible Capacity Lass

with Float Charging

Figure 5.1-4
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power source selection are system simplicity, dollar cost, contamination of the

Martian surface, and sterilization.

A battery system is the simplest candidate system as no auxiliary equipment is

required for usable output power. However, a battery charger has been included to

enhance the total battery performance and maintain full battery capacity during

long wet stand periods rather than incur the weight penalty of providing excess

initial capacity to account for wet stand losses. Further, to insure partial

mission success - no single point failure - functional redundance is assumed, i.e.,

the total energy requirement is divided into multiple individual battery packages.

The penalty for the use of this method of redundancy is reduced total mission re-

liability. Figure 5.1-5 shows the battery power source system divided into four

battery packages per the selected baseline design.

Review of development work on sterilizable, long wet life, silver-zinc batteries

indicates significant advances have been made in the technology. Three companies,

Eagle-Picher, Electric Storage Battery, and Douglas Astropower Laboratory, are

currently developing heat sterilizable, long wet life batteries. Polarization

curves for these cells are shown in Figure 5.1-6 along with a polarization curve

of a Douglas Astropower Laboratory cell utilizing a new separation material,

DE(F), which gives significantly higher performance capability. Testing of cells

using the DE(F) separator is now in progress at Douglas Astropower. The design

parameters of the cells subjected to heat sterilization testing are shown in

Figure 5.1-7. A summary of the heat sterilization and wet stand tests performed

to date is shown in Figure 5.1-8. These test results, although providing limited

evidence of sterilizability of silver-zinc batteries, do show feasibility.

The energy density achieved in these tests batteries indicates that 30 to 38

watt-hours per pound is achievable with a discharge rate of C/4 (battery capacity

in ampere-hours/discharge time in hours) on 8-ampere-hour batteries. Comparing

unsterilizable silver-zinc battery data, scaling up capacity from 8 to 80 ampere-

hours increases battery energy density by about 20%, and reducing discharge rates

from C/4 to C/30 additionally increases battery energy density by about 10%.

Extrapolating this scaling to sterilizable batteries, the 30 to 38 watt-hour per

pound energy density of 8-ampere-hour batteries should yield an energy density of

40 to 50 watt-hours per pound for an 80-ampere-hour battery discharged at a C/30

rate. A conservative figure of 35 watt-hours per pound is assumed for Surface

Laboratory battery weight computations. This allows some weight contingency in

the battery which may be used in solving the remaining development problems.
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Cell Case

Type of Cell

Battery Case

Cell s/Battery

No. of Cells Tested

Operating Temperature

ESB MODEL 334

40 amp hr

5-RA1-116

Polyphenylene Oxide

Sea led

J

7
80°F

EAGLE PICHER

8 amp hr

4 Pernion - 307
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Sealed- Pressure Relief

Magnesium-Sea led

6

12

75°F
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Figure 5.1-7

SUMMARY OF STERILIZABLE AgZn CELL AND BATTERY TESTS

URER

Ster i I izati on

Environment

Wet Stand Time

Wet Sand Condition

Discharge Rate

Energy Density

Cycle Life Following

Wet Stand (100% Depth)

ESB MODEL 334

135°C- 120hr-

1 cycle

4 hr Rate to 1.3

v/cell; Then 8 hr
Rate to 1.3 v/cell

31.5 wh/Ib

EAGLE PICHER CO.

BATTERY BATTERY

NO. 1 NO. 2

145°C-36hr-3 cycles

DOUGLAS

ASTROPOWER

145°C - 36 hr -

3 cycles

10 months 10 months 5 Months - 4 cells

3 months - 4 cells

2 months - 4 cells

1 month - 3 cells

Discharged Charged Charged

4hr Rate to 4hr Rate 7hr Rate for lhr;
1.25 v/cell to 1.25 Then 2.7 hr Rate to

v/cell 1.0 v/cell

30 wh/Ib 38 wh/Ib 20.5 wh/Ib*

2 16 2+

* Projected for optimized battery design.

Figure 5.1-8

5.1-12

REPORT F694 • VOLUME Zll • PART B • 31 AUGUST 1967

MCDONNELL ASTRONAUTICS



I
I
I

I
I

I

I
I

I
I
I
I

I
I

I

I

I
I
I

Radioisotope Thermoelectric Generator (RTG) - The advantages, disadvantage%

and other significant factors of the RTG are summarized in Figure 5.1-9. The

major factors influencing an RTG selection for the SL electrical power source

are mission time, fuel availability, and reliability.

The nominal 89-year half life of Plutonium-238 results in a loss of only

one-half percent per year. This essentially constant fuel output, plus the

passive, fixed, mechanical structure provides a long life, very reliable power

source. Addition of heat pipes to operate in a cyclic temperature environment

reduces the reliability.

Plutonium-238 fuel availability is an important factor in the evaluation of

an RTG power source for the 1973 VOYAGER mission. The fuel availability definition

ultimately depends upon interactions between the VOYAGER program fuel requirements,

the requirement of other radioisotope power programs, and the implemented fuel

production capability. Classified fuel production capabilities giving an ac-

curate, current picture are available in Reference 5.1-1. The long lead time of

Plutonium-238 production requires early decision on fuel allocation and production

requirements.

The inherently low radiation level associated with Plutonium-238 and the fuel

capsule re-entry protection preclude major radiation problems and minimizes the

personnel hazard. Plutonium-238 decay produces neutron radiation and some gamma

radiation. However, the gamma production increases with time. For long-term

missions, or extended storage prior to launch, the increased gamma radiation must

be considered. Sensitive experiment equipment may require local shielding.

From a weight standpoint, the RTG is an attractive power source, since the

design is dependent upon power output rather than energy output. However, for

efficient utilization of the energy, the power requirements should fluctuate very

little providing, ideally, identical peak and average power levels - constant

power load. Since the weight is independent of energy requirements, in-transit

energy, independent of spacecraft orientation, is available from this source.

An added feature for this fixed weight is the large continuous thermal energy

available for equipment heating. This may be disadvantageous, as this heat must

be continually rejected even in a cyclic temperature environment. This presents

a thermal control problem to retain sufficient heat to keep equipment and the RTG

warm during low temperature periods, yet reject the continuous, constant, heat

output when the temperature rises. However, a very suitable environment is the

cloudy, cold Martian surface or deep space. For Earth storage and launch opera-
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ADVANTAGES

Very Long Mission Life
L_l,_yy VU,l_Ut ,,_u_l_nuen_ O r

Weight
Sterilizable
In Transit Energy Source
Heat Source
High Reliability
Minimum Power Output

Degradation with Time
Non-Magnetic

RTG POWER SOURCE CHARACTERISTICS

DISADVANTAGES

Expensive System and Fuel
' :--:* ' Fuel A -, ,.i-.I-. I III I leo _VQI laal i ITy

Power Output Fixed by Design Size
Continuous High Thermal Output
Neutron and Gamma Radiation
Complex Electrical System

OTHER FACTORS

Reasonable Development Requirement
A ___--A_LI_ W_ :--L_

Acceptable Volume
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tions, present OSE for air cooling is adequate to allow RTG usage. A byproduct

of the RTG thermal design is inherent heat sterillzability as operating tempera-

tures exceed the sterilization requirements.

The electrical subsystem for the RTG power source is complex. A typical elec-

trical subsystem block diagram is shown in Figure 5.1-10. In addition to the RTG,

shunt regulators and DC-to-DC converter-regulators are required. The shunt

regulator provides the desired, constant, RTG electrical load thereby preventing

RTG temperature buildup when the using electrical and electronic equipment load is

light; block redundancy is required. The DC-to-DC converter-regulator provides a

nominal 28-volt, regulated potential from the low voltage unregulated RTG output;

block redundancy is required.

Utilization of a basic SNAP-27, RTG design minimizes generator development

for the VOYAGER program. A detailed discussion of VOYAGER RTG design derivations

from the proven SNAP-27 generator design is found in Reference 5.1-2.

The RTG is an attractive electrical power source for missions of sufficient

duration that batteries alone or fuel cells are exorbitantly heavy and into an

environment hostile to solar cell operation. The key to RTG integration is the

accommodation of the continuous heat dissipation requirement and the radiation

emitted by the radioisotope fuel. Since the CB and SL are designed to accept an

RTG source of up to 7 kilowatt-hours thermal for 1975-79 missions, inclusion

in the 1973 mission requires minimum design perturbations.

The cost of the RTG and radioisotope fuel is far in excess of the cost of other

power sources considered. A decision to use RTG must include a commitment to fully

utilize its potential, i.e., design for a long duration mission. The cost for a

short duration mission - a few days - is prohibitive, as other power sources are

significantly less expensive and provide the mission requirement with equal or

less weight and adequate reliability.

RTG-Battery - The advantages, disadvantages, and other significant factors of

this power source are summarized in Figure 5.1-11. The major factors influencing

an RTG-Battery system selection for the SL electrical power source are mission

duration, dollar cost, reliability, and weight.

The RTG-Battery system reduces the RTG requirement by a factor of two by

utilizing batteries to supply the peak power demands of the SL electrical equip-

ment. This results in a significant dollar cost reduction and a significant heat

rejection reduction over an all RTG system. The penalty is an increased electri-

cal system complexity with a corresponding reliability reduction, and the system
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RTG - BATTERY POWER SOURCE CHARACTERISTICS

ADVANTAGES DISADVANTAGES OTHER FACTORS

Very long mission life

Energy output independent

of weight

In transit energy source

Heat source

Non-magnetic

Power output fixed by

battery design

Expensive system and fuel

Limited fuel availability

Continuous high thermal output

Neutron and gamma radiation

Very complex electrical system

Life limited by battery cycle life

Heaviest system with Ag-Cd batteries

Requires RTG and battery development

Ag-Zn batteries reduce

system weight

Acceptable volume

Good voltage regulation

by use of regulators
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limitations of battery cyclic capability.

The battery is sized to handle the peak power of communication periods at a

50% depth of discharge. Silver-cadmiumbatteries have been sterilized, and

after the first few charge-discharge cycles of reduced capacity, have shown re-

covery to nearly 100% pre-sterilization capacity. Inadequate data is available on

cycle life of sterilizable Ag-Cd batteries; however, cycle life of unsterilizable

Ag-Cd batteries have been demonstrated beyond 500 cycles at 50% depth of discharge.

No additional degradation beyond the initial first few cycles is anticipated for

sterilizable Ag, Cd batteries. Therefore a Ag-Cd battery is assumed for the RTG-

Battery system.

The RTG-Battery system for the SL electrical power requirements requires a

150 pound Ag-Cd battery if discharged to 50% capacity. This battery weight,

plus the weight of the electrical system components associated with the battery,

yield a total system weight in excess of the all RTG system. However, current

Ag-Zn battery development using inorganic separators has demonstrated the feasi-

bility of 2500 charge-discharge cycles at 25% depth of discharge. This separator

has also proven sterilizable. Should further developments produce a sterilizable,

high cycle life, long wet life Ag-Zn battery, the RTG and Battery system may be

significantly lighter than an all RTG system.

A typical RTG-Battery power source electrical block diagram is shown in Figure

5.1-12. This system is considerably more complex than an all RTG system. For

this reason, block redundancy is shown for the electronic equipment, and functional

redundancy is shown in packaging the battery. The weight of the system takes into

account these redundancy measures.

5.1.2.2 Evaluation of Power Sources - The comparison of the power sources is

summarized in Figure 5.1-13.

Weight - Figure 5.1-14 shows the weight comparison for the electrical energy

requirement. Figure 5.1-15 shows the weight comparison for the thermal energy

requirement. The deciding factor for the weight of the Battery and Fuel Cell power

sources is the thermal energy requirement. The Battery power source weighs 244

pounds to produce 9.3 kWh(t) with an associated electrical capacity of 8.1 kWh(e).

The Fuel Cell power source weighs 122 pounds to produce 9.3 kWh(t) with an

associated electrical capacity of 5.5 kWh(e). An equal weight Fuel Cell power

source produces 22.5 kWh(e) and 37.5 kWh(t). The weight of the RTG and RTG-Bat-

tery power sources is determined by the 300 watt electrical power requirement and
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300 W(e), 4700 WH(e), 9300 WH(t) POWER SOURCE PERFORMANCE COMPARISON

I
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I
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CHARACT E RIST IC
PERFORMANCE

FUEL CELL BATTERY RTG RTG-BATTERY

Weight 122 pounds 244 pounds 321 pounds 342 pounds Fuel Cell

Volume 7,600 cubic inches 3,650 cubic inches 16,700 cubic inches 12,300 cubic inches Battery

Dollar Cost $400,000 $20,000 $28,000,000 $14,000,000 Battery

Available RTG or RTG-
5500 watt-hours 8120 watt-hours Unlimited Unlimited

Electrical Energy Battery

Available RTG or RTG-
9300 watt-hours 9300 watt-hours Unlimited Unlimited

Thermal Energy Battery

Peak Power 600W Electrical 6600W Electrical 300W Electrical 2000W Electrical

Capability !__1_0WThermal 990OW Thermo! 6000W Thermal 6000W Thermal Battery

Environment H2, 02, H20 None for sealed Thermal, neutron, Thermal, neutron, Battery
Contamination purge gases battery gamma radiation gamma radiation

Negligible 4-12% per month
Capacity Loss plumbing loss; wet stand; negligible _% per year _% per year Fuel Cell

no tankage loss. on float charge.

1-year stand 10-month wet stand Limited by
Life feasible; demonstration; 38-month design battery cycle RTG

40-days opera- 12 charge-discharge life life
tion feasible, cycles demonstrated.

Availability Development Development Development Development
required, required, requi red required

Reliability .9999 .9895 .9981 .9927 Fuel Cell

Inherent in RTG

Sterilization Unknown Feasibility Inherent in design design; battery RTG
demonstrated, feasibility

demonstrated

Operating

Temperature

190°F to 220°F;

250°F limited

performance.

2- 300-watt fuel

cell stack

2 - hydrogen tank

2- oxygen tank

2 - high pressure
regulator

1-water storage
tank
plumbing

Components

50°F to 120°F;
20°F to 50°F limited

output.

4 - battery (2030

watt-hour)

4- battery charger

1050°F hot junction

525°F cold junction

4- 75-watt RTG

2- shunt regulator
2 - converter-

regulator

1050°F hot junction

525°F cold junction
20°F to 100°F for

battery

2- 75-watt RTG

2- shunt regulator
2 - converter-

regulator

2 - battery
2 - battery charger
2 - regulator

BEST SYSTEM

1

Battery

Battery

I

I
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is independent of energy requirements.

Volume - Figure 5.1-16 shows the volume comparison for the thermal energy

requirement. The volume of the RTG and RTG-Battery power source is determined

by the 300 watt electrical power requirement and is independent of any energy

requirement. The RTG volume is computed as that of a cylinder of the overall

diameter of the cooling fins. It should be noted that additional volum_ is required

to insulate any temperature sensitive equipment located adjacent to an RTG.

Fuel Cells require gaseous reactant storage, and consequently the volume in-

creases significantly with energy requirements. The volume is computed as that of

a cube occupied by the 3000 psi spherical tank. This accounts for the fact that

the space in the corner of such cube is not utilized in reality, except for tank

mounting.

Battery volume is computed based on an electrical energy density of 2.4 watt-

hours (electrical) per cubic inch. This density converts to 2.7 watt-hours (ther-

mal) per cubic inch.

Dollar Cost - The dollar cost is that for each Surface Laboratory and does not

include non-recurring engineering, development, and qualification costs. The RTG-

Battery power source reduces the RTG unit cost over the all RTG system. However, an

offsetting cost is the twofold development and qualification costs of the RTG and

Battery.

Available Energy - The RTG and RTG-Battery power sources are not limited by

energy requirements within the mission times envisioned for VOYAGER due to the use

of a constant output, long llfe fuel. Fuel cell and battery power sources utilize

a chemical-electrical conversion. Hence, their weight depends upon energy re-

quirements, and a fixed weight system produces a limited quantity of energy.

Power Capability - The RTG is limited by its design to a specific constant

power output. The Fuel Cell is limited by cell stack design to a maximum power

level with minimum overload capability. The power output of a battery power

source is limited due to internal resistance, which is very low for Ag-Zn cells,

resulting in large peak power capability.

Environment Contamination - Fuel cells require periodic purging which expells

oxygen, hydrogen, and a small amount of water vapor. Unless contained, these

gases, especially the water vapor, may contaminate the local environment for

various atmosphere composition experiments. An RTG produces continuous neutron

and gamma radiation and is a concentrated source of radiant heat. These factors

may be detrimental to sensitive experiments and may affect the local Martian
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surface. Sealed batteries are considered passive devices producing no contamin-

ation and insufficient heat to affect the Martian surface.

Capacity Loss - Properly designed gas storage tanks exhibit no leakage, and

plumbing leakage is negligible for the operating periods suitable for fuel cell

consideration. RTG energy loss at 1/2% per year does not represent a significant

energy loss factor even for long duration missions. Battery capacity losses on

wet stand are very significant, but may be overcome by continuous float charging.

Life - Fuel cells have been assembled over one year prior to actual use and

therefore show possibility of long stand time. Bench tests in excess of 40 days

of operation demonstrate operating life an order of magnitude longer than required

for the baseline mission time including extension. RTG design life has been shown

feasible by the results of SNAP-27 operation.

To date, only two silver-zinc batteries have shown successful sterilization

followed by i0 month wet stand time and at least one discharge cycle. One of

these batteries has shown ii additional charge-discharge cycles. Presently, no

data exists for the cycle life of sterilizable Ag-Cd batteries.

Sterilization and Availability - All candidate power sources require significant

development. Battery and Fuel Cell sources require sterilization development.

Fuel cell manufacturers anticipate no significant cell stack changes to meet

sterilization requirements. Fuel cells also require purge gas reduction and/or

containment development. The RTG is inherently sterilizable but requires an

extensive program to uprate and integrate the SNAP-27 basic generator design to

VOYAGER requirements.

Operating Temperatures - The RTG operates at a hot junction temperature of

1050°F, and the cooling fin base temperature is 480 to 500°F for operation on

Mars. Due to the high, continuous, heat generation, any equipment located in

proximity of an RTG probably requires thermal shielding. The same is true, but

to a lesser extent, of a fuel cell stack. Battery operating temperatures are

compatible with other electrical equipment, but a battery may require thermal

shielding from an adjacent high temperature heat source.

Components and Reliability - The fuel cell system presumes block redundancy

of the fuel cell modules, and functional redundancy of the reactant system. This

arrangement yields a very high probability of success based on failure rates

experienced during the Gemini program.

The RTG system presumes functional redundancy of the RTG unit, and block

redundancy of the electronic equipment. Assuming a .9999 probability of success
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for each RTG unit, the RTG system probability is excellent. Addition of the

battery components in a functional redundant mode for the RTG-Battery system,

yields a lower probability than the all RTG system.

The Battery system has functional redundancy of the batteries and no re-

dundancy of the battery charges. With the battery capacity of 8.1 kWh(e), the

probability of completing the baseline, 4.7 kWh(e) mission is adequate but lower

than the other systems.

5.1.2.3 Preferred Concept - The battery system is the preferred power source

for the 1973 VOYAGER mission. It offers the cheapest, contaminant free, sterilizahle

approach, and of the proven sterilizable candidates, it is the lightest and re-

quires minimum integration problems. Sterilization is considered proven feasible

from current programs, and minimum development is required. Solar cells are un-

desirable because of the large array area and auxiliary power source required.

The large area is not compatible with the spacecraft size and design wind constraint.

Solar cell performance is questionable in a dusty, cloudy Martian environment, and

therefore a solar cell system requires an auxiliary power source to meet these con-

straints.

The fuel cell is an attractive power source due to its light weight and

excellent reliability with acceptable performance in other areas except sterili-

zation and contamination. The sterilization ability is unknown, and the purge re-

quirement produces environment contamination. Therefore, the fuel cell power source

is not acceptable. However, if the sterilization and contamination factors can

be overcome, the fuel cell is an attractive power source for moderate duration

missions.

The RTG power source is very expensive, is heavy, and requires considerable

integration problems not only in VOYAGER design, but with other programs and

agencies involved with radioisotope fuel. The advantageous feature is long life

for the initial fixed weight. Therefore, while it is an attractive alternative

for later, long term missions, the RTG system is not appropriate for the 1973

VOYAGER mission.

The RTG-Battery system has the disadvantages of both the RTG and Battery power

sources. The interesting feature is halving the RTG cost, but offsetting this is

the twofold development and qualification requirements. Should silver-zinc bat-

teries of long cycle life be developed, this system may offer a significant

weight advantage over the all RTG system. Assuming sterilizable, long cycle life,

silver-zinc batteries are not available, the RTG-Battery system is not as desirable
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as an all RTG system

5.1.3 Battery Charging Study - Selection of the preferred approach to battery

storage during the cruise phase of the mission requires additional wet stand

testing on silver-zinc cells. Eagle Picher cells assembled into two, 6-cell

batteries and tested by the General Electric Company, were sterilized and subjected

to a I0 month wet stand period. The battery stored in a discharged condition

yielded 98% of its initial capacity after the wet stand period, and has survived

ii additional cycles to date. The other battery stored in a charged condition,

after replacing the wet stand capacity loss, delivered 75% of its initial capacity

but failed to accept a charge after the second discharge. Analysis of the cells

indicate that failure was due to dehydration of the electrolyte caused by loss

of hermetic seal. Increased electrolyte concentration is believed to have resulted

in accelerated oxidation of the separators. These tests indicate that a battery

of this construction, on long wet stand in a discharged condition, has a high

probability of survival. These tests, however, do not allow comparison with

performance after extended wet stand in the charged open circuit condition or

after extended wet stand with continuous charging.

Maintaining the batteries on continuous charge during cruise is selected as

the preferred approach because:

a. It is a lighter weight approach than open circuit charged stand since

the battery need not be oversized to allow wet stand capacity losses;

b. It is preferred over stand in a discharged condition since the

battery is independent of the battery charger in so far as partial

mission success is concerned with a maximum expected capacity loss

of about 30% during cruise for a charger failure at launch;

c, Internal power must be provided to the cruise commutator and instru-

mentation subsystems during periods when flight spacecraft power is

not available; and

d. The power dissipated in the battery chargers as heat, serves the same

purpose as electrical heaters.

Three methods are available to charge batteries: constant current, constant

potential, and float charge.

A constant current charger, as its name implies, provides a constant current

flow into the battery, usually at a C/10 (battery capacity in ampere-hours/desired

charge time in hours) or lower rate, with a consequent rise in charger output

potential as the battery becomes fully charged. If charging is allowed to
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continue indefinitely, overcharging and very high charger output potential results

in gas production in the cells and, finally, cell rupture. Voltage limiting at

1.94 _ .01 volts per cell for silver-zinc cells is required to provide adequate

charging potential and prevent overcharging.

A constant potential charger, as its name implies, provides a constant output

potential at 1.94 _ .01 volts per cell with a consequent fall in output current as

the battery becomes charge. However, for a deeply discharged battery, initial

current flow will be excessive. Therefore, this charger usually employs current

limiting to prevent high initial currents. If the current limit is set low,

essentially constant current charging occurs for the majority of the charging cycle.

Continuous charging prevents silver migration, hence loss of silver from the

positive plate thereby maintaining battery capacity. Continued charging, with either

of the above methods, results in long term operation at 1.94 volts per cell. The

minute flow of current at th_ pn_nt_=1 ,.,_11 _=_a _ _v_n_ze _11 ^_ +_ _ .... _ ....

in the positive electrode that is normally available for the conduction of current

through the electrode.

A float charger, as defined herein, is essentially a current limited, constant

potential charger at 1.98 volts per cell, with a second mode of constant potential

output. When the current level, during constant potential charging, reduces to

half the current limiting value, approximately C/100 rate, a current sensor trans-

fers the battery output potential to the battery open circuit potential of 1.87

.01 volts per cell. This reduced potential prevents excessive silver conversion

in the positive electrode and reduces the zinc dendrite growth over the 1.98 poten-

tial. The float charging method has shown promising results at the Goddard Space

Flight Center. Although test data is limited, this method is selected for the

VOYAGER program over the constant current or constant potential battery charging

methods.

5.1.4 Power Conditioning Study - Based on the selection of a battery power source,

the preferred method is a direct current power distribution system at unregulated

battery potential utilizing decentralized power conditiong. This method provides

maximum flexibility, freedom from catastrophic failure modes, and inherent elec-

tromagnetic compatibility.

Three methods of power conditioning were considered: distributing subsystem

power requirements from a centralized power conditioner, distributing direct cur-

rent at unregulated battery potential with decentralized regulation and power
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conversion, and distributing alternating current at regulated potential from a

centralized inverter to decentralized transformer-rectifier-regulators. A com-

parison of the methods is summarized in Figure 5.1-17.

Centralized power conditioning is not a desirable method due to existence of

the catastrophic failure mode requiring redundancy, the use of isolation devices

to prevent subsystem interactions, the inflexibility after the central power con-

ditioner is designed, and the increased wire weight for multiple voltage distri-

bution. The only apparent advantage is a weight saving by combining many subsystem

power conditioning units into a common unit. However, this produces a catastro-

phic failure mode requiring block redundancy. Also, interaction of subsystems

utilizing common voltages may require isolation from the common power source.

Based on a preliminary evaluation, these redundancy and isolation requirements

nullify any weight saved by utilizing a comon power conditioner. In addition,

this centralized method requires considerable integration to preclude subsystem

designs from including superflouous power conditioning and to acquire early,

accurate definitions of all subsystem power requirements. Any deficiency of the

early definitions, yields an inadequate or delayed power conditioner design due to

the inflexibility of this method after completion of the hardware design.

The combined method utilizing a central inverter, alternating current dis-

tribution, and subsystem transformer-rectifier-regulators is not preferred due

to the interference from the high voltage, alternating current distribution system.

Short rise and fall times of square wave, alternating current power distribution

creates a broad spectrum of interference which is difficult to remove from sus-

ceptible circuits. The high amplitude magnetic field in the vicinity of a power

line is difficult to confine with shielding, and effective cancellation by uti-

lizing twisted pair distribution lines will not exist where such pairs pass

through connectors, and where power buses are employed. High frequency components

of the square wave will induce interference into the "ground loops" formed by

multiple grounds of RF coaxial cables and RF shielding and any conductors routed

through a connector containing power lines.

The distribution regulation of 28 +--5volts for the decentralized method is not

an undue fluctuation, and subsystems involving motors, actuators, solenoids, relays,

or heaters require no power conditioning. A major portion of this regulation value

is due to the shift from the silver peroxide (AGO) to the silver oxide (Ag20) pla-

teau voltages. The other major portion of this value is due to reduction in the

plateau voltage as a function of the remaining battery energy. The smallest portion
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METHOD

Decentralized

(Direct Current,

Unregulated
Potential

Distribution)

Centralized

(Distribution

of Subsystem

Required

Power)

Combined

(Alternating

Current,

Regulated
Potential

Distribution)

COMPARISON OF POWER DISTRIBUTION METHODS

ADVANTAGES i

Flexibility for later changes.

Simplest distribution system.

No catastrophic failure modes.

Minimum redundancy required.
Distributed heating within

equipment bay.

Best method to supply motors,

actuators, solenoids, relays,
heaters.

Inherent EMI suppression from

subsystem power conditioners.

Lightweight if no redundancy or
EMI isolation is used.

Distribution regulation: 1%

Minimum integration required with
subsystem equipment.

Distributed heating within equip-

ment bay.

Distribution regulation: 1%

DISADVANTAGES,

Regulation: -+5 volts.

Large conductor size required to distribute high power.

Control of subsystem design required for efficient

power conversion.

Flexibility limited by capability of power conditioner.
Catastrophic failure mode exists.

Block redundancy required for power conditioner.

Multiple conductors required for multipotential
distribution.

EMI suppression required.

Heavy system with: block redundancy, EMI suppression,

multiple potentials.

Large conductor size required to maintain regulation.

Large conductor size required for low voltage distribu-
tion.

Localized heating requires added thermal control.

Subsystem integration required to minimize distribution

voltages.

Flexibility limited by capability of central inverter.
Catastrophic failure mode exists.

Block redundancy required for central inverter.

Alternating current distribution causes severe EMI
problems.

Motors, actuators, solenoids, relays, heaters require

no power conditioning and supplied from raw battery

power.
Twisted, two conductor distribution required.
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of this value is due to actual load fluctuations. With the load profile of

Figure 5.1-1 for the cyclic temperature day, the battery terminal fluctuation

due to load changes should not exceed 0.4 volts, and the distribution system loss

variation should not exceed 0.6 volts. This yields an overall load regulation of

1.0 (_+0.5) volt. Therefore, this regulation is not considered a significant

disadvantage of this decentralized method and does not warrent consideration of a

central regulator to distribute regulated potential thereby incurring the dis-

advantages of increased weight and added equipment.

The requirement of the decentralized method for integration with and control of

subsystem power conditioning design to utilize the most efficient conversion method

is not considered a significant disadvantage. Unregulated power distribution is

not significant as the major fluctuation is not of a dynamic character but rather

a slowly changing basic potential level. The conductor size is usually the mini-

mum size wire suitable for physical handling for all subsystems except the high

rate transmitter. The transmitter will be supplied unregulated potential, direct

current for any power conversion method because of the required conversion to

multiple, high voltage outputs (1000-2000 volts).

The decentralized power conditioning method utilizing unregulated potential,

direct current distribution is the preferred approach due to its flexibility,

inherent electromagnetic interference suppression, and freedom from catastrophic

failure modes.

5.1.5 Power Grounding Study - Based upon the conclusions of trade studies of

Volume II and Volume IV for the CB and ESP respectively, the SL electrical power

subsystem provides the backup energy for the CB and ESP electrical power subsystems.

This requires some type of interconnection of all three power subsystem returns

as well as power buses, and is discussed herein. See Volume II (CB), Part B,

Section 5.6.3, for a discussion of the Flight Spaeeeraft/Fllght Capsule power

interface.

One method of interconnectlon of the power subsystem is to employ a DC-to-DC

converter between each power subsystem. By this method, each power subsystem is

electrically isolated, and each power subsystem has a single point ground (SPG).

However, a weight increase for the converters is incurred, an increase in energy

loss from the SL batteries is incurred due to converter inefficiency when the

backup system is utilized, and a command or signal crossing the interface must

be transformer coupled due to the absence of a common return system, incurring a

further weight increase. This added equipment reduces reliability.
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A second method of interconnecting the power subsystems is direct power bus

interconnection. This requires the corresponding direct power return interconnec-

tions. With the ESP, CB, and SL power returns interconnected, the problem be-

comes where to ground the return system: in the ESP; in the CB; or in the SL. The

ESP may not be required on later missions. The ESP is, therefore, ruled out be-

cause a grounding change from a flight proven system to an unproven system is required

at the later date. The CB is utilized on all missions and appears a common point.

However, when the SL is a rover the SL power system would float when detached

from the CB. Locating the SPG in the SL eliminates the above problems of ESP and

CB locations, hut incurs somewhat longer return paths for the ESP and CB. However,

these may be relatively short for the 1973 configuration, and a short ground path

is provided for the SL where the bulk of the sensitive equipment is located. For

later missions, when the SL is a rover, the CB return system floats upon removal

of the rover. However, by that time, the CB has performed its service and is no

longer required.

A third method of interconnecting the power subsystems is to switch power,

return, and ground connections as the interconnection of the power subsystems is

required. By this method, each power subsystem is grounded, and the grounds and

returns are switched when intereonnectlons are required for backup. The switches

required in the return system reduce the reliability. Switches are required in

the various ground paths to maintain only one SPG upon interconnection of the

power subsystems. More than one ground point in the return system produces mul-

tiple ground paths and ground loops and is incompatible with EMC requirements.

Any switch in the ground path is required to carry both dry circuit noise current

and power subsystem fault current. The two requirements are not compatible.

Once a contact has carried fault current, it cannot be expected to perform in the

dry circuit realm. Since the power subsystem returns for the CB, ESP, and SL are

not normally interconnected, transformer coupling of the commands and signals

crossing the interface is required.

The preferred grounding scheme, for direct current power distribution, is

direct power return interconnection with the SPG located in the SL. This is the

minimum weight system, without any return or ground switching problems. This

grounding scheme also provides a flight proven system for future missions wherein

the ESP may be deleted and the SL becomes a rover.

5.1.6 Conclusions and Recommendations - The preferred approach to the Electrical

Power Subsystem for the 1973 VOYAGER Surface Laboratory is a battery power source
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utilizing sterilizable, sealed, manually activated, silver-zinc batteries with

distribution to the SL subsystem of direct current at the unregulated battery

potential. Each subsystem provides its own power conditioning, thereby providing

flexibility and inherent electromagnetic compatibility. During cruise the bat-

teries are float charged from Flight Spacecraft cruise power to maintain their

capacity during wet stand.

Solar cell performance in the Martian environment is indeterminate due to the

unknown wind, dust, and overcast conditions. To properly evaluate solar cell

selection for later missions, the addition of small fixed arrays is recommended

to define actual solar cell performance under these conditions. Should actual

performance be significant, solar cells are an attractive approach to mission

extension wherein low average power is required.

The weight advantage of a fuel cell system is significant for missions of

moderate duration. Therefore, a program is recommended to demonstrate steri-

lization and to reduce the purge requirements such that the purged gases are con-

tainable or of negligible effect upon the Martian atmosphere. If this program is

successful, the fuel cell system is an attractive power source for the 1973 VOYAGER

mission.

Insufficient test data is currently available to determine the advantages and

disadvantages of battery wet stand in the charged versus discharged condition.

Therefore, a program is recommended to evaluate sterilized, silver-zinc battery

performance as a function of the wet stand method, i.e. fully charged, on float

charge, or fully discharged.
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5.1-2

SECTION 5. i

REFERENCES

"Report of the Ad Hoc Committee on Radioisotopes for Space Power", UB

NASA TMX 1212, 1966 (Secret)

"Voyager Capsule RTG Integration Studies - Summary Report for Phase B",

General Electric Company, Missile and Space Division Report, ANSO PIR

1371 dated 7 August 1967.
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5.2 SEQUENCING AND TIMING - The Surface Laboratory (SL) requires a subsystem

which governs the on-board automatic control of sequencing and timing functions

during the periods of surface operations. This subsystem, denoted the Sequencer

Subsystem, includes two functional units:

a. Sequencer and Timer (S&T) - furnishes timing references and automatic

sequential control of supporting subsystems during the SL operational

mission, and

b. In-flight Test Programmer - furnishes timing and sequencing required

for exercising the SL subsystems as required for checkout of landed

mission readiness.

Since the in-flight test philosophy and the rationale and analysis of the

Test Programmer are discussed in Section 4.4, only the Sequencer and Timer

analysis and selection is presented.

5.2.1 Requirements and Constraints - The requirements and constraints which

have influenced the design of the S&T are those of mission, system and sub-

system effects upon the S&T, as shown in Figure 5.2-1.

5.2.1.1 Primary Constraints - The requirement that the SL be entirely on-board

sequenced requres an SL device to control all landed functions from a stored

memory sequence. This on-board sequencing controller must contain an alternate

(electrically reprogrammable) memory using updates through the FSC command link.

The sequential controller memory must also be compatible with updates after land-

ing utilizing the SL command link inputs. Self-test capability is included in

the SL S&T to minimize the time and electrical energy required to perform in-

flight checkout. The Science Data Subsystem (SDS) sequences and controls the

science instruments, sample acquisition and processing equipments. The re-

mainder of SL sequential functions are controlled by the S&T, including control

of all SDS-supporting subsystems and providing the primary SDS time references.

5.2.1.2 Secondary Constraints - The size of the S&T memory is determined by the

the maximum duration and resolution of time delays, the number of different time-

based marks or functions required by the SDS-supporting subsystems and the allow-

ance for redundancy and growth capability. A number of different discrete

stimuli are needed by the SDS-supporting subsystems. The number of S&T outputs

includes an allowance for redundancy and growth capability. The S&T size and

weight limitations are similar to those thoughout the SL; however, the require-

ment for minimum power applies especially to the S&T and like equipment which are

on continuously. Also, the S&T must endure the peak full-charge battery voltage
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when first activated on the essentially unloaded bus, and the lower voltage

primary poweriinput when the unregulated bus is depressed under full load. The

S&T must operate in the temperature, vibration, etc. environments throughout the

VOYAGER-mission (per Reference 5.2-1) within the constraints of the FC structure

and thermal control subsystems. The S&T memory storage must be designed to with-

stand the high temperature, shock and electromagnetic radiation environments.

5.2.1.3 Operational Requirements - The S&T will supply the following classes

of outputs which the SL supporting subsystems require:

a. Discrete (bilevel or Pulse) - switching time-based control of subsystem

operation (ON/OFF, START/STOP or Mode Selection)

b. Data Word (Train of digital data pulses - proportional information trans-

ferred to using subsystem from S&T, and,

c. Reference Frequency - cyclic clock or synchronizing periodic reference

signals for subsystem timing.

These requirements form the bases for the corresponding memory and output sizing

constraints described above. The SL S&T interface diagram, shown in Figure 5.2-2,

summarizes the SL subsystem constraints upon the S&T as follows:

a. Inputs

o Primary Power - 23 to 33 VDC

o Sensors - Start commands from SL sensors/subsystems

o Command Link - Real-time and/or non-real-time signals to provide Earth

updates or backup commands

b. Outputs

o ON/OFF_ START/STOP, Mode commands

To Antenna Control (7)

To Electrical Power (13)

To Science Data System (4)

To Telemetry (8)

o Digital Data - Fixed or timing data words

To Antenna Control (2)

To Science Data System (4)

To Telemetry (130, including memory readout)

o Reference Frequencies

To Antenna Control

To Science Data System

To Telemetry

To Instrumentation

5.2-3
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TABULATION OF SEQUENCER AND TIMER (S&T)
DESIGN REQUIREMENTS AND CONSTRAINTS

II

REQUIREMENT OR CONSTRAINT

1. Stored memory sequ._ nce

2. Memory alterable in flight (via FSC)

3. h_mory alterable after landing

4. Built-in-self-test

5. Size limitation of S&T packaging

6. Weight limitation

7. Input power constraints

8. Size of memory

9. Number of outputs

10. S&T provides sequencing and controls for SL

subsystems supporting SDS

11. Withstand temperature, vibration, etc.,

environments

Abbreviations: S&T: Sequencer & Timer

SL : Surface Laboratory

SDS: Science Data System

FSC: Flight Spacecraft

R EASON

SL must be entirely on-board sequenced

To enable post-launch mission modifications by

Earth command (prior to de-orbit)

To enable post-landing mission modifications by

Earth command (following initial sequence of

events)

To verify proper operation after cruise-storage, in

a shortest inflight checkout period

Lander configuration requires minimum size

electronics package

Capability of launch vehicle for interplanetary

mission requires lightest possible equipment

Must consume minimum power to conserve

battery weight, must operate with fluctuating

voltage levels

Number of different time marks required to

sequence SDS-supporting subsystems

Number of different discrete stimuli required

by SDS-support subsystems

SL sequences all post-landing functions; SDS
controls its own science equipment

Voyager Mission subjects equipment to severe
environment
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Timer
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SDS Ref.
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v

v

v

Instrumentation

Telemetry:

Data Request

Data Ready
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Data Words
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5.2.1.4 S&T Functional Requirements - The resulting S&T functional definition

is based upon the preceding requirements.

a. Accept, decode and store non-real-time (delayed) commands from the

Command Decoder.

b. Based on these commands and an internally generated timing clock, time

the delayed period from the corresponding "START" signal.

c. Activate the appropriate discrete output when this delay period has

elapsed.

d. Upon request from a using subsystem, transfer the desired stored data

word (command) to this subsystem.

e. Generate reference clock frequencies for use by interfacing subsystems.

Figure 5.2-3 shows the Functional Block Diagram of the SL S&T to accomplish

these functions and the interconnections and inter-relationships of the functions

+_ _ 1 _

5.2.2 Alternate Approaches and Selection - A study of the timing and memory

techniques was performed to evaluate alternate implementation approaches.

5.2.2.1 Timin_ Technique - The two methods which were considered to implement

the "Count Down Time Delay" function in Figure 5.2-3are the decrementing and

incrementing timing techniques. In general, data words stored in the memory

represent time-to-go-to-output following receipt of the appropriate sensor input

signal. There are two ways of determing when to enable each output. The first

way is decrementing (subtracting a pulse from) the stored word periodically after

the sensor input is received and enabling the output when the word represents

zero time-to-go. The second way is incrementing (adding a pulse to) a master

time word, whose value is initially zero, periodically and comparing it to the

stored word. When the words are equal, the output is enabled.

Operational Differences - In a destructive-read-out (DRO) memory, decrement-

ing requires the stored word to be read from the memory periodically, decremented,

and be written into the memory. The stored word is therefore changed at intervals

equal to the time represented by its least significant bit. Incrementing requires

the stored word to be read from the memory and then be restored in it without

change. The read/write operation must be performed at intervals equal to the

time represented by the least significant bit of the stored word. Therefore, the

decrementing and incrementing methods are equal in the number of read/write oper-

ations required.

In this case, where time-data words with two different accuracies (and
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resolutions) are stored and counted, incrementing is more complex. Incrementing

is complicated by the need for a master time word with the greater accurancy

represented by its least significant bit (LSB) and for another master time word

with the lesser accuracy represented by its least significant bit. Only by

using binary coded decimal (BCD) coding for the stored words would one master

word be required. However, BCD coding would require longer words and the result-

ing BCD incrementer would be more complex. Therefore two master words are

required for the simpler of the two incrBmenting methods.

Since there are eight (8) sensor inputs which activate the same number of

independent groups of time functions, either eight (8) sets of two master time

words each are required, or one set of two master time words are required with

the following method.

The one set of two master time words are incremented following receipt of

the first sensor input. The stored words associated with the first sensor are

periodically compared to the appropriate master time word. Upon receipt of the

second sensor input, the stored words associated with it are modified by adding

the existing master time to them and then comparing them to the master time

words. The third through eighth groups of stored words are likewise modified

upon receipt of their sensor inputs. Of course, all the master time words must

be stored in the non-volatile memory to prevent their loss during power inter-

ruptions. The master time words are then, similar to the stored words in the

decrementing method since they must be read from the memory, incremented instead

of decremented, and be written into the memory.

Effect of Failure - In the decrementing method, a malfunction during the

read/write affects only one time function. In the incrementing method, a mal-

function during the read/write of a master time word affects all the time func-

tions associated with it.

Method Selection - The comparative characteristics of the preceding timing

methods, summarized as follows, show the clear superiority of the decrementing

over the incrementing method of timing applied to a destructive read-out non-

volatile memory.
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Characteristic

Read/write

operations

Read only

operations

Read/write

failure effect

Complexity

Easiest to

implement

Easiest to

increase capacity

Accuracy

Decrementing

All data words

periodically

None

One time

function

Simplest

Easiest

Eas ies t

Most accurate

(Least opera-

tions per

second)

Incrementing

(2 master time

words)

2 master time words

periodically and most

of data words once

All data words

periodically

All time functions

associated with the

master time word

Most complex

Most difficult

Second most

difficult

Second most

accurate

Incrementing

(16 master time

words)

16 master time words

periodically

All data words

periodically

All time functions

associated with the

master time word

Second most complex

Second most difficult

Most difficult

Least accurate

(because of more

operations per

second)

5.2.2.2 Memory Technique - The function "Store/Readout Command" on the SL S&T

Functional Block Diagram Figure 5.2-3 involves the selection of the proper data

storage or memory technique. The selection of memory techniques evolves directly

into the corresponding choice of hardware devices for digital data storage.

Since a detailed discussion of the tradeoff study of such storage devices is

already included in the Telecommunication Selection of Data Storage Section

5.4.10, only a summary of the rationale as applied to the SL S&T is repeated

here.

a. Functional Requirements

o Capacity - 3072 bits (128 words of 24 bits each)

o Input from Command Link - Serial data stream

o Output to Telemetry Periodic Serial data stream at 500 to 800 bps

o Output to Others - Serial data stream at 104 to 105 bps
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b. Technical Requirements

o Maximum reliability

o Minimize weight

o Minimize size

o Minimize volume

o Meet environmental requirements including sterilization temperatures,

shock and radiation

Candidate Memories - The requirement that the S&T retain the stored digital

data words during the 30 week power off transit phase, and that these words be

updateable by the command link before separation, necessitates a non-volatile

memory with a capacity sufficient to store and manage the required data words.

The volatile semi-conductor memory and the larger capacity dynamic magnetic

memories are not considered for the SL S&T data storage.

The following types of non-volatile memories have been considered.

Magnetic Shift Registers - Magnetic Shift Registers (MSR) such as were used

in the Gemini Electronic Timer offer wide temperature range, large operating

margins, high noise immunity, low power, and high output voltage. Their dis-

advantages are speed (i0 microseconds per shift) and size (120 cubic inches for

82 words of 16 bits). Each 16 bit MSR requires a shift current generator, trans-

fer switch and write amplifier. The serial output allows simple serial arithmetic

circuits.

Core Memory - Random access, coincident current, core memories, with a cycle

time of 2 microseconds are available. A wide temperature range ferrite core

stack can be used to eliminate the necessity for an oven to control stack temper-

ature. The access circuitry of coincident current core memories is relatively

simple and, when a matrix selection technique is used, the circuit component

count can be kept low compared to other types of memories. Also in the random

access mode, a word can be selected from the entire store in a fixed time (access

time) which is independent of its location in the stack. The comparatively high

output levels of core memories enable the use of sense amplifiers of relatively

low gain-bandwidth product, thereby providing highreliability and high immunity

to noise.

The standard core memory described above can be operated as a non-volatile

memory by incorporation of a power shutdown sequencer.

The advantages of cores lie mainly in their ready availability, known
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characteristics, and high degree of uniformity.

Non-Destructive Read Out (NDRO) Memories - Memories that fall into this

category are thin film, drum, twistor, plated wire, and multi-aperture devices

(MAD).

Magnetic drum or tape memories of the low bit densities required for the

S&T would provide excellent NDRO storage but size, weight, and power requirements

would be excessive. Disadvantages of drum and tape memories are the susceptabil-

ities to both thermal and mechanical shock impulses and require a warm-up time

after initial power turn-on. Another disadvantage is the access time which is

of the order of milliseconds. Thin film, twistor and plated wire memories are

presently in the stage of advanced development. They have a comparatively low

output level and low signal-to-noise ratio and thereby require complex high

gain-bandwidth amplifiers.

The multi-aperture device (MAD) memories have many of the characteristics

of core memories previously discussed. Power requirements for a MAD memory are

lower than core memories because consecutive interrogate cycles can be performed

without the requirement to restore data, but access circuits would be more

complex.

Memory Selection - Because of its advantages, the destructive read-out

coincident current magnetic core memory has been selected as the S&T storage

device. Again summarizing the results of the Data Storage Study of Section

5.4.10 as pertaining to a memory applicable to the SL S&T (about 3,000 bits) the

following requirements were considered with the corresponding choices resulting.

o Meets Functional Requirements - magnetic core

o Reliability - magnetic core or semiconductor

o Power - magnetic core

o Weight - magnetic core or semiconductor

o Volume - magnetic core or semiconductor

o Environment - magnetic core

o Cost - magnetic core

o Seiected Approach - magnetic core

An example SL S&T Memory Schematic Block Diagram is shown in Figure 5.2-4. This

is the 3-D coincident current implementation of a magnetic core memory requiring

the same total number of X and Y drivers as the sum of the core "dimensions" of

the memory stack while the sense amplifiers and inhibit driver are each the same

in number as the bit length of the data word.
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5.2.3 Selected Approach - The alternates studied and the major factors involved

in the selected techniques are summarized in Figure 5.2-5. The configuration of

the SL S&T which complies with the preceding requirements and selections is as

follows:

a. Coincident current magnetic core memory

b. Decrementing memory word timing technique

c. Memory Size - 128 words, 24 bits each, reprogrammable in flight

d. Estimated Probability of 1973 Mission Success - .9918

e. Size - 288 in 3

f. Weight - ii pounds

g. Power Consumption - 12 watts (23 to 33 VDC primary power)

h. Reference Frequency Outputs - 1/240 Hz to 40 KHz, _.01% accuracy

i. Digital Word Outputs - up to 16 bits/word at 500 to 40,000 pbs

j Discrete _ ..... _ n,,+_,,+o _ _9 As .... _o=, AoloypA in time up to i diurnal

cycle from any of eight (8) selected input occurrences, +--2to 0.5 sec.

timing accuracy

5.2.3.1 Design Points - The SL S&T design concept is based upon the selected

implementation approaches to the subsystem requirements. The required outputs

to SL subsystems are detailed as follows:

Discrete Outputs - The SL subsystems currently require 21 discrete commands

subsequent to several possible mission "marks"; these discretes are desired at a

time of up to one diurnal cycle after a given "mark" with a resolution of !2 seconds.

A more accurate time sequence is also required for delays up to 5 hours after the

"mark" with resolution of +0.5 second. These discrete output requirements are based

upon the sequence of operational events for a typical 1973 mission, shown in Figure

5.2-6. The input stimuli and the required S&T reactions for this mission may be

summarized as follows:

o Power ON (S&T activation)

o Update Memory (S&T verifies memory upon TM request)

o Standby command (an "ARM" command to allow timing from a pre-separation

mark to activate SL on internal power and to backup impact sensor SL

initiation)

o Touchdown (an "INITIATE" command resulting in 12 discrete outputs and

the transfer of 2 digital data words)

o Turn OFF HRSB Transmitter Command (a physical sensing indicating that HG

Antenna is at its measured elevation lower limit inferring the HRSB
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S&T ELEMENT

Memory Storage
Technique

Timing Technique

SEQUENCER AND TIMER (S & T) TRADE STUDY SUMMARY

ALTERNATE TECHNIQUES

[ Magnetic Core]

Magnetic tape/drum

Sereiconductor devices

Advanced static magnetic devices

i Decrementing Method J

Incrementing Method

I Selected Technique ,

MERITS OF SELECTED APPROACH

Non-volati le memory

Less complex

More reliability, smaller, lighter

and consumes less power

Survives VOYAGER environment/

sterilization

Lower development cost

Better development status

Sufficient speed and accuracy

Less complex

More reliable

Easier design implementation

Best increased capacity ability

Greater flight experience
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SL SEQUENCER AND TIMER (S&T) SEQUENCE OF EVENTS

INTERFACE

DESIGNATION S&T INPUT (1)/OUTPUT (O)

I-I Apply Power to SL S&T

I-2 Update SL S&T Parameters

O-1 Verify SL S&T Parameters

I-3 Switch SL S&T to Standby

SOURCE
S&T

DESTINATION

FS CC&S SL Pwr (S&T)

MOS SL S&l"

SL S&T MOS

FS CC&S SL S&I"

0-3-1 Switch Sk to Internal Power SL S&T SL Pwr

I-4 IS SL S&I"

IS

IS

S&T

IS

Turn on SL Command Receiver (CR)

Turn On SL Telemetry (TM)

SL CR (Pwr)

SL TM (Pwr)

SL TM

SL SDS (Pwr)

O-4-I

0-4-2

0-4 -3

0-4 -4

Sense Touchdown SL

SL
® SL

Select TM Day/Night Mode SL

Turn on SL Science Data Subsystem (SDS) (_ SL

BACKUP

MOS

MISSION
TIME

T12 - 150 min

T12 - 147 .in

S&T TIME

(Warmup)

(Update)

- T12 - 117 min (Verify)

MOS T12 - 72 min (Standby)

MOS T12 - 65 min Tes + 7 min

CB IS T26 T o
SL S&T

SL S&T

MOS*

SL S&T

T26

T26

T26

T26
0-4 -5

0-4-6

0-4-7

0-4-8

0-4-9

O-4-10

O-4-11

O-4-12

O-4-13

O-4-14

O-4-15

I-5

O-4-16

O-4-17

O-4-18

O-4-19

0-4-20

O-4-21

O-4-22

0-4-23

0-4-24

0-4-25

0-4-26

0-4-27
(0-4-5)

0-4-28
(0-4-6)

0-4-29
(O-4-8)

0-4-30

O-4-31
(O-4-12)

0-4-32

0-4-33
(O-4-13)

0-4-34

Turn on SL LRSB Transmitter

Turn on SL Antenna Control Subsystem (ACS)

Start High-Gain (HG) Antenna Erection Sequence

LRSB Transmitter Turn on Signal

SL

SL

SL

SL

S&T

S&T

S&T

S&T

SL Radio (Pwr)

SL ACS (Pwr)

SL ACS

SL TM

MOS*

MOS*

MOS*

MOS*

T26

T26

T26 + 30 sec

T26 + 30 sec

Begin High-Gain Antenna Gyrocompassing (_ SL

End High-Gain Antenna Gyrocompassing (_ SL

Transfer Hour Angle Data Word SL

Turn on SL HRSB Transmitter SL

HRSB Transmitter Turn on Signal SL

Transfer Time-to-Noon Data Word** SL

Turn Off SL HRSB Transmitter SL

or

Turn Off SL HRSB Transmitter Command SL

ACS

ACS

S&T

S&T

S&T

S&T

S&T

ACS

SL ACS

SL ACS

SL ACS

SL Radio (Pwr)

SL TM

SL SDS

SL Radio (Pwr)

SL S&l"

SL S&T

SL S&T

MOS

MOS

MOS

T26 + 10 min

T26 + 35min

T26 + 35 min T

T27

T27 + 30 sec

T28 - 5 .in

(at EL Limit)

HRSB Transmitter Turn Off Signal

ShutdownHG Antenna Tracking

Transfer HA Reset Word

Turn Off SL ACS

Turn Off SL LRSB Transmitter

LRSB Transmitter Turn Off Signal

Transfer Time-to-Earthset**

Switch TM to Night Mode

Transfer Time-to-Sunset**

Transfer Time-to-Midnight**

Transfer Time-to-Earthrise**

Turn on LRSB Transmitter

Turn on SL ACS

LRSB Transmitter Turn on Signal

Begin Tracking Earth (HG Antenna)

Turn on HRSB Transmitter

Transfer Time-to-Sunrise**

HRSB Transmitter Turn on Signal

Switch TM to Day Mode

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL S&T

SL TM

SL ACS

SL ACS

SL ACS (Pwr)

SL Radio (Pwr)

SL TM

SL SDS

SL TM

SL SDS

SL SDS

SL SDS

SL Radio(Pwr)

SL ACS (Pwr)

SL TM

SL ACS

SL Radio (Pwr)

SLSDS

SL TM

SL TM

MOS

MOS

MOS

MOS

MOS

MOS

MOS

MOS*

MOS

MOS*

MOS*

MOS

MOS

MOS

T28 - 5 min

T28 - 5 min

T28 - 4 min

T28

T28

T28

T29

+0 sec

+ 0 sec

+ 0 sec

+ 0 sec

+ 0 sec

+ 0 sec

+ 30 sec

+ 30 sec

+ 10min

+ 35 min

+ 35 minT

T O + 75 min

+ 30 sec

T n ....

Tes - 5 min

Tes - 5 min

Tes - 5 min

- 4 min

Tes

T
es

T
es

Tes ....

T
SS

T _ °**
SS

T m - ...

Ter ....

Ter

+ 30 sec

T30

T30

T30 + 30 sec

T30 + 1 min

T30 + 75 min

+ 75 min.
30 sec

T31

Ter

+1 min

+ 75 min

Tsr ....

+ 75 min,
30 sec

Tsr

I Sequence may repeat each diurnal cycle: (0-4-14 through 0-4-34)

Notes: ACS - Antenna Control Subsystem
EL - HG Antenna Elevation Angle

HG - High-Gain

HRSB - High Rate S-Band
LRSB - Low Rate S-Band

* - Non-real-time (delayed) backup by Earth command when possible

** - Time-to-XXX words to SDS once each minute after landing
B - Backup Signal

t - Requested by ACS at approximate time shown
SL - Surface Laboratory
S&T - Sequencer & Timer

TM - Telemetry

IS - Impact Sensor
CR - Command Receiver

SDS - Science Data System

FSC - Flight Spacecraft

CC&S - Central Computer & Timer (FSC)

MOS - Mission Operations System
Pwr - Power (Electrical)

Predicted Times: Tsr - Time of Sunrise

Ter - Time of Earthrise

Tm - Time of Midnight
Tss - Time of Sunset

Tes - Time of Earthset

Tn - Time of Noon

TO - Time of Landing

Mission Times: T12 - Separation (CB/FSC)

T26 - Touchdown
T27 Begin HRSB Transmission

T28 - Tes

T29- Tss

T30 - Ter

T31 - Tsr
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Transmitter shutdown)

Other S&T switching actions result from internally stored, pre-separation

predicted time to Sun and Earth references (which may be updated after landing):

a. Predicted Earthset (5 discretes results),

b. Predicted Sunset (i discrete results),

c. Predicted Earthrise (7 discretes results), and

d. Predicted Sunrise (i discrete results).

Digital Data Words - The S&T must also supply 7 digital words for SL support-

ing subsystems for the 1973 mission previously described, with two more envisioned

for extended missions.

a. Antenna Control Subsystem - (both words have _i pulse resolution)

Hour Angle (HA) word (up to 135 pulses)

HA Reset word (up to 180 pulses)

b. Science Data Subsystem - (all words are required each minute with a +2

second resolution)

Time-from-landing (up to i diurnal cycle)

Time-to-Sunrise/Sunset (up to 1/2 diurnal cycle)

Time-to-Noon/Midnight (up to 1/2 diurnal cycle)

Time-to-Earthrise/Earthset (up to 1/2 diurnal cycle)

Days-from-landing (up to 750 days, +__iday, for extended missions)

c. Telemetry Subsystem - (required each minute)

Time-from-landlng (up to i diurnal cycle _2 second resolution)

Days-from-landing (up to 750 days, +__iday, for extended missions)

Reference Frequencies - The SL subsystems in the preferred 1973 typical

mission require 4 reference clock frequencies for internal counting or inter-

system synchronization.

a. Antenna Control Subsystem - 1/240 Hz _.01%

1.0 Hz +.01%

b. Science Data Subsystem - 1.0 Hz _.01%

1.0 KHz +.01%

c. Telemetry Subsystem- 1.0 Hz _.01%

1.0 KHz +.01%

d. Instrumentation Synchronization - 38.4 KHz _.01%

5.2.3.2 Functional Elements - The S&T conforming to this selected approach

consists of the following functional elements, connected as shown on the

schematic block diagram of Figure 5.2-7: memory, memory buffer register,
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Data Ready ._r

A Data Requestir

Data

Clock

Sen s_r Inputs i J

DC Power

SL SEQUENCER AND TIMER SCHEMATIC BLOCK DIAGRAM

Te lemetry
Interface

Command

Link

Interface

Sen sor

Interface

Master

Oscillator

1.92 MHz

A Data Data Ready

-_,oc_ + J J_oto_quo_

Digital J
Data

Interface

|

Timing and
Control

e Register DataContent Control

• Memory Read/
Write Control

• Address Comparator

_i Validity Check

De cod ing/Convert i ng

Frequency Counting

Regulated

DC Voltages

To All Units

_i Memory

• Memory Stack
X & Y Drivers
Sense Amplifiers

Inhibit Drivers

l

I DC/DC H _ i_ Reference

Converter Power Frequency

_I and Detector InterfaceRegulator

Memory
Buffer

Register

Decrementer

and Zero

Detector

Output
Interface

Discrete

1/240 Hz

1.0 Hz
•_ 1 KHz

38.4 KHz
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decrementer and zero detector, timing and control, master oscillator, converter-

regulator and power detector, and the required interface units (digital data,

telemetry, command link, input sensor, reference frequency and discrete output).

With these elements being standard or flight proven in design concept, the SL

S&T will perform the required functions within the constraining technical require-

ments analyzed herein.
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5.3 CONTROL SUBSYSTEM HIGH-GAIN ANTENNA- Th_instrumentation and performance

of the high-galn antenna control electronics is discussed in this section.

The functional operation of the control electronics is developed in Section C3.

5.3.1 Summary - Studies have been performed to determine the suitability of

inertial and radio control for erecting and pointing the high-gain antenna. The

most effective means of orienting the antenna was found to be the use of a pre-pro-

grammed azimuth-elevation antenna, mounted on a polar or hour axis aligned to the

Mars spin rate by a two-axis gyrocompass. Automatic radio tracking is incorporated

as an Earth command option to provide a fine alignment capability. Calculations

show that gyrocompassing in conjunction with knowledge of the local vertical,

longitude and time of day can guarantee a pointing accuracy of 6 degrees which is

the 3.6 db beamwidth of the antenna. On the other hand, the autotrack system

can point the antenna to within one degree of Earth, which is less than the 0.2 db

beamwidth of the antenna. The difference in performance (3.4 db) represents an

improvement of 120 percent in bit handling capability.

5.3.2 Technical Requirements - Two distinct capabilities are required, antenna

and mount erection immediately after landing, and continuous tracking during the

time the Earth is visible. Several requirements constrain the control system

design to operate:

a. Without assistance from Earth.

b. With 3 degree differences between actual and predicted landing site

latitude and longitude.

c. Within the latitude range of plus i0 to minus 40 degrees.

d. With the Surface Laboratory tilted from the local vertical by as much

as 34 degrees.

e. Without dependence on the Sun.

f. With an initial beam pointing error of less than 7.4 degrees.

5.3.3 Design Approaches - The concepts that were studied are inertial and radio

frequency tracking schemes, and a combination of both.

5.3.3.1 SinKle Axis Gyrocompass - This concept employs a leveled turntable which

carries an azimuth gyro. The gyro senses the tangential component of Mars rate

at the landing site, and produces an error signal which torques the turntable in

azimuth as long as the gyro senses any appreciable input. Azimuth motion will

stop when the gyro input axis lies in the East-West direction. In this position,

it is orthogonal to the spin axis of Mars and has no sensible input. The antenna
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is attached to the turntable through azimuth and elevation gimbals. Since the

turntable is now accurately oriented in both Mars surface coordinates and celestial

coordinates, the two gimbals can be rotated through preprogrammed angles, and thus

point the antenna beam toward Earth. In practice the turntable can be replaced by

the azimuth gimbal since both rotate about the same axis. It must be emphasized

that the success of this scheme depends on the availability of a well leveled

base for the gyrocompass.

5.3.3.2 Two Axis Gyrocompass - The requirement for leveling may be eliminated by

choosing some direction other than the local vertical for the azimuth elevation

mount. A suitable direction is that of the Mars spin axis. Two gyrocompasses can

be used to erect a spin axis mount. In the one gyrocompass concept azimuth rota-

tions are measured with respect to the known direction, East. A similar angular

index or reference must be provided for rotations about the spin or (more

appropriately) hour axis of the two gyrocompass concept. The null position of

either a pendulum or a Sun sensor attached to the outer gimbal of the hour axis is

a suitable reference. Once the antenna is pointed at Earth, tracking can be

accomplished by uniformly rotating the antenna and two outer gimbals about the hour

axis. The four gimbals of the antenna pedestal are now arranged in the order:

Laboratory - azimuth, elevation, hour axis, declination - antenna. It should be

noted that the term azimuth has been reassigned from the antenna positioning gimbal

(hour-axis) to the innermost axis as this axis most closely develops azimuth

motion in the two-gyrocompass concept.

5.3.3.3 Autotracking (Radio Tracking) - RF scan and tracking information can be

best employed in improving the accuracy of inertial aiming or for backup use in

the event of malfunctions in the inertial command loop. In this case, the RF

tracking equipment can be utilized to operate the antenna in either an elevation

over azimuth or X-Y axis configuration in accordance with proven usage. This sys-

tem consumes significant Surface Laboratory power and requires a constant signal

(+130 dbm) from Earth as a target. To eliminate these requirements, it is desirable

to limit the time spent in the autotracking mode, and this suggests a second

reason for having RF tracking capability. While the system is tracking Earth-

motion, the resulting declination movements can be recorded by Earth. At the

conclusion of the day, changes in azimuth and elevation angles required for

accurate hour axis alignment can be computed, and the pedestal gimbal angles can be

readjusted. After the first day, enough data will have been taken to permit

accurate clock tracking to continue indefinitely.

REPORT F694 • VOLUME III • PART B • 31 AUGUST 1967

MCDONNELL ASTRONAUTICS

5.3-2



!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

5.3.3.4 Trade Study Summary - A summary of the major items evaluated during the

control subsystem trade study is indicated in Figure 5.3-1. The preferred design

is a two-axis gyrocompass erection mechanism for initial acquisition combined

with an autotrack capability for fine alignment. A functional block diagram of

this concept is presented in Figure 5.3-2.

5.3.4 Performance Analyses - The performance of the control subsystem is defined

in terms of the initial pointing error of the gyrocompass erection mechanism and

by the subsequent tracking error. Error analyses of both capabilities have been

completed.

5.3.4.1 Gyrocompass Beam Pointin_ Errors - The 3 sigma errors considered in

this analysis are:

o Gyro Drift

Fixed Torque 0.5 deg/hr

Mass Unbalance 1.0 deg/hr

Pendulum 1.0 deg

Landing Site Uncertainty 3.0 deg

Mars Polar Axis Uncertainty 1.0 deg

Lander Tilt From Vertical 0 to 40 deg

(Includes 6 degree allowance

for crushable attenuator

deformation.)

The landing geometry for this analysis is shown in Figure 5.3-3. Point P

denotes the landing point and the local vertical. Z' denotes the Mars polar axis

and Z denotes the landing package vertical which forms the angle _ with the polar

axis. The angles T, o, and _ locate the package vertical relative to the landing

point, and the Mars polar axis. The angle T represents the bearing from North

of the plane containing the landing point and the package vertical, while the

angle o represents the angle between the local vertical and the package vertical,

and accounts for terrain tilt. The gyrocompass alignment technique rotates the

antenna through a two axis gimbal arrangement to align the antenna hour axis along

the Mars polar axis. The antenna dish is then rotated through two additional

gimbals in hour angle and declination so that it points toward Earth. Subsystem

errors produce a beam pointing error that is conveniently described by components

of declination error, and hour angle error. The declination pointing error as a

function of landing point latitude is shown in Figure 5.3-4. The maximum error
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SELECTION

CRITERIA

Probability

of Mission

Succe SS

System
Performance

Deve Iopment

Risk

Versatility

Cost

CONTROL SUBSYSTEM TRADE SUMMARY CHART

GYROCOMPASS

Autonomous initial orien-

tation in short time maxi-

mizes useful mission life.

Gyrocompass is suscep-
tible to wind induced

vibrations

Initial pointing error less

than 5 degrees at site

latitudes between plus or

minus 10 degrees, and

degrades with time after

gyrocompass loops are

turned off.

Gimbal bearings and
drive motors must be

qualified for sterilization.

Best performance is
achieved at low Martian

latitudes and with level

lander base.

Gyrocompass loop and

gimbals require develop-

ment funding.

AUTOTRACK

Initial acquisition is time

consuming and may shorten
useful mission life of the

lander.

Not as susceptible to vi-

brations as gyrocompass.

Tracking error is less than

1 degree, and is independ-
ent of latitude and time.

Gimbal bearings and drive

motors must be qualified

for ster i l i zation.

Search program can be

adapted to landing site.

Autotrack circuitry and

gimbals require develop-

ment funding.

HYBRID (INERTIAL/RADIO)

Functional redundancy provides

better reliability than either

radio or inertial techniques

alone.

Final error is same as tracking

error which is less than 1 deg,

and is independent of latitude
and time.

Use of both approaches incurs

the dovelopment problems of

each approach.

Gimbal bearings and drive

motors must be qualified for

sterilization.

Most versatile. Gyrocompass

assures quick acquisition,

autotracking gives small

tracking error. Either mode

can fulfill all mission

requirement s independent ly.

Most expensive. Development

of two techniques must be

funded.
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is less than 2.4 degrees for all possible landing point latitudes. This error

results from gyro drift and Mars polar axis uncertainty and is independent of the

other error sources.

The hour angle pointing error is a function of all the error sources.

Figure 5.3-4 shows the worst case errors which occur at a i angle of zero and a

40 degree terrain tilt. An error of 12.3 degrees will occur at a landing site

latitude of 40 degrees. The rapid increase of azimuth error with increasing

latitude is a direct result of gyro drift. The errors corresponding to a r angle

of 30 degrees is shown for comparison as the lower curve of Figure 5.3-4.

Boundaries for hour angle error of 6.0 degrees or less are shown in

Figure 5.3-5 with T angle as a parameter. It is seen that for positive landing

point latitudes, bearing angle magnitudes of 30 degrees or greater satisfy this

condition for all possible values of terrain tilt and latitude. For negative

landing point latitudes, T angle magnitudes of 150 degrees or less satisfy this

condition.

Hour angle errors for two other conditions are shown in Figure 5.3-6. If

there is no terrain tilt, the maximum hour angle error is less than 3.8 degrees at

all latitudes. This error increases as the tilt increases, and the specific case

of 40 degrees of tilt is also shown on Figure 5.3-6 for T angles of plus or minus

90 degrees.

5.3.4.2 Autotrack Accuracy Calculations - In monopulse tracking systems, there

are generally four sources of tracking error. These are:

o Receiver Thermal Noise

o Wind Gust Torques

o Phase and Amplitude Unbalance

o Dynamic Lag

The contribution of each of these sources and the effect on overall system

performance are discussed in this section.

Receiver Thermal Noise - The limitation placed on tracking accuracy due to thermal

noise can be expressedas :
!

on = I/k'_KT B /CSu m

Where: on = The RMS Thermal Noise Error (degrees)

k = The Normalized Error Slope (volts/volt deg)

K = Boltzmann's Constant

T = Difference Channel Temperature (degrees Kelvin)
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B = Equivalent Two-Sided Servo Position Loop Bandwidth (cps)

CSu m = Sum Channel Signal Level

The normalized error slope in the difference channels (k) is a function of

antenna size, squint angle of the offset tracking beams, and losses between the

feed and the tracking receiver input. The optimum k occurs for squint angles that

are approximately one-half of the antenna 3 db beamwidth, and for this case is

k = 0.115 volts/volt-deg

which is the value as referred to the comparator output. This value is further

reduced by resistive and coupling losses in the feed line amounting to 8.5 db.

The value of k referred to the tracking receiver input is

k = 0.115 x 0.14 = 0.016 volts/volt deg

The difference channel noise temperature includes contributions from atmospheric

losses, feed loss, and receiver noise. However, coupling losses are nonresirtive

and do not influence the noise level, while atmospheric losses are negligible

with respect to the receiver noise temperature and can be ignored (this assumes

the antenna is not pointing at the Sun or other discrete galacticnoise sources).

With these assumptions established, the noise temperature in the difference

channels is

T = 2938°K

Position-loop noise bandwidth of the servo system is generally defined only when

operating in the closed-loop autotracking mode, as they can be functions of

various parameters within the system. For discrete sampling operation, the band-

width is not clearly defined and will depend somewhat on the time constant of the

servo low pass filter. In all cases, however, B will be less than 2 Hz and to be

conservative, this value will be used to determine thermal noise error.

The sum channel signal strength can be computed if it is assumed that the

DSIF will radiate 130 dbm of effective power.

Csum = -114.4 dbm

With all the unknowns established, the thermal contribution to tracking error can

be computed:

on = 0.3 degree (RMS Thermal Noise Error)

Wind Gusts- The effect of wind gusts on continuous autotracking systems is a

function of structural design and the response of the servo system to error inputs.

For the proposed system, there is a relatively long time interval between position

changes and the servo is not designed to respond to rapidly changing wind gusts.
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Therefore, the total uncompensated wind gust effect will be considered the error

for the purpose of evaluating tracking performance, and this is completely deter-

mined by mechanical design. The antenna and its pedestal will be designed so that

for the worst case, the rms wind error will be less than 0.5 degrees.

Phase and Amplitude Unbalance - Tracking error from this source is expected to be

insignificant in relation to the magnitude of errors from other sources.

Dynamic La_ - Dynamic lag, which results from a difference in time between the de-

tection of an error signal and its correction by the servo, can be defined for this

discrete system as the maximum error which has to be detected before the servo will

pulse the drive motors. The mlnimumerror threshold should exceed one half of the

step interval. The step interval involves a trade-off between maxlmumpermltted

error and maximum allowed power consumption. The stepping intervalhas been chosen

as i degree, and the antenna is stopped after an error of 0.8 degrees is detected.

1--nemaximum lag error will therefore be 0.8 degrees.

The root sum square value of the combined error sources is i degree.
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5.4 TELECOMMUNICATIONS - Mission success for the Surface Laboratory can be measured

the the amount of pertinent scientific information received at the DSIF. The tele-

communications subsystems must accommodate and transmit this information. Near real

time data recovery and command authority are high valued considerations in this

design. The ability to adapt to unexpected environments and take maximum advantage

of fortuitous circumstances is mandatory. Meeting these requirements within the

constraints of size, weight, and power has been the primary consideration in our

studies.

5.4.1 Telecommunications Design Approach - Our studies have been concentrated in

three major areas: telemetry and data acquisition, command functions, and RF

link design. A block diagram of the preferred approach is shown in Figure 5.4-1.

The telemetry and data acquisition studies considered the functions of both

the telemetry subsystem and the Science Data Subsystem as a single entity (called

the data handling system) in many of the studies. The preferred approach draws a

distinct interface between these subsystems as discussed in Section 5.4.9 and summar-

ized in Section 5.4.1.3.

The Mariner command technology was applied to the SLS command function, result-

ing in a straightforward design.

TheRF llnk design, summarized in Section 5.4.8, evolved from and consideration

of system level failure modes, data requirements, and current state-of-the-art

technology. As shown in Figure 5.4.-1, we have selected a dual telemetry llnk

approach which consists of a high-rate link and a low-rate link, both transmitting

directly to Earth. The command link is also direct from Earth, and provides a

metric tracking capability when used with the high-rate transmitter in a transponder

mode.

The design approach is summarized in Figures 5.4-2 and 5.4-3. The TCM design

is constrained by the data load and the mission time line. These are summarized

in Figures 5.5.-4 and 5.4-5, respectively. The data collection and transmission

modes derived from these studies are shown in Figure 5.4-6.

The post-landing data collection rates are either much greater than a conserva-

tively designed llnk can manage in real time, or much less. The data storage sub-

system design is based on this fact. As discussed in Section A3.3.4, all data

transmitted on the high rate link are transmitted from storage on a "last

in-first out" basis.
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The high-rate link requirements can be met in many ways. We have considered

direct links to Earth, using high gain antennas, and also relay links to the orbit-

ing spacecraft. The preferred approach is the direct link, since the optimum relay

link orbit choices do not coincide with those for the spacecraft mapping mission.

Choice of a direct link was followed by other studies as shown in Figure 5.4-2.

These included antenna subsystem implementation, as discussed in Section 5.4.6, and

modulation and coding techniques. PSK/PM and convolutional coding (with sequential

decoding) were chosen to optimize the link efficiency as much as the state-of-the-

art would permit.

The resultant hardware configuration was then analyzed in detail, resulting in

basic system level parameters, size, weight, efficiency, and failure modes and

effects, as discussed in Section 5.4.6 and 5.4.7.

The low-rate link, intended as a highly survivable backup, presents a unique

design problem. The effective radiated power required to maintain a coherent link

precludes the use of low power and omnl-directlonal antennas, both of which are

necessary for this link. Therefore, we chose a non-coherent multiple frequency

shift keying (MFSK) technique, thus avoiding the power penalty. Since this techni-

que is unproven in this application, where the data rate is small compared to the

frequency uncertainty, a considerable amount of analysis was required to determine

acquisition techniques, times, and therequired slgnal-to-noise ratio. These

study results are presented in Section 5.4.3 and indicate the preferred receiver

characteristics as well as the transmitter design.

The telemetry data acquisition function is a primary part of the TCM design.

In Section 5.4.9 through Section 5.4.13 we discuss the many configurations and

techniques that were studied. The selected approach provides a high degree of

versatility and optimum data formatting techniques. Interlaced tube formats were

selected for engineering and periodic science data, to provide optimum efficiency

and tolerance of changes. Burst tube formats were chosen for the high-data-rate

and aperiodic experiments.
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5.4.2 High Rate Link Characteristics - The high rate link provides the primary

means of communication from the SL to Earth. Because we must transmit a large

quantity of information (5 x 106 bits per day minimum) over a range of 250 x 106

to 2.85 x 106 km it is necessary to provide an effective radiated power (ERP)

on the order of 63 dBm. The selected design consists of a 20 watt transmitter and

a 36 inch diameter parabolic antenna which has a peak gain of 24.3 dB.

This section discusses the selection of modulation and coding techniques to

maximize the link efficiency within the constraint of compatibility with the DSN

configuration planned for 1973. The preferred system uses PCM/PSK/PM modulation

and convolutional coding with sequential decoding.

5.4.2.1 Modulation Technique - Compatibility with the DSN in terms of data recep-

tion and two-way coherent Doppler tracking has been assured by the use of a square

wave subcarrier conveying PSK data which is phase modulated onto an S-band carrier

with a modulation index of 1.15 radians. The subcarrier frequency is 3600 Hz and

is coherent with the data stream.

The selected modulation index retains enough carrier power to ensure a

signal to noise ratio of 16 dB in a carrier tracking bandwidth of 5 Hz to allow

Doppler tracking and data demodulation.

For the bit rates selected (300, 600 and 1200 bps) synchronization can be

accomplished with either a squaring loop synchronizer or the unique synchronizer

developed for the Capsule Bus and Entry Science Package relay links. The

ambiguities in synchronization can be easily resolved with transition detecting

circuitry of the conventional type.

5.4.2.2 Codin_ Techniques - The purpose of using coding in the telecommunication

system is to maximize the efficiency of the link. This increase in efficiency

can be used for either reducing the effective radiated power (ERP) requirements

if a fixed data rate is required or it can be used, for a fixed amount of available

ERP, to maximize the data rate of the link. In order to achieve this efficiency

an encoder is required at the transmitter and a decoder at the receiver. This

section evaluates the characteristics of various coding techniques. Sequential

decoding with convolutional coding has been selected for use.

5.4.2.2.1 Evaluation Criteria - The three criteria used in the evaluation are:

(i) Efficiency (reduction in power requirements achieved by using the coding

technique), (2) simplicity of the coding equipment, and (3) effects on the (Earth)

decoding equipment. Of the evaluation criteria, the most important is efficiency.
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The selection of a coding technique involves a tradeoff between additional

complexity and transmitter power requirements. The next most important factor

is the extent of complexity of the encoding hardware. Use of an extremely

complex encoder would not be warranted. The least important factor is the

complexity of the decoding equipment. However, if complexity in the ground

receiving station can provide improved system performance, it becomes an attractive

approach to improve link margin.

5.4.2.2.2 Alternate Approaches and Significant Characteristics - Five candidate

types of codes were considered in the study. These are:

a. Block codes with bit by bit detection,

b. Block codes with detection over the word,

c. Block codes used in a concatenated fashion,

d. Hybrid coding, in particular, convolutional coding followed by block

coding and,

e. Convolutional coding with sequential decoding.

Reference 5.4-1 describes the characteristics of a, b, and c in detail. Con-

volutional codes are also discussed in Reference 5.4-1, but much new information

has been obtained since its publication and is contained in Reference 5.4-3.

Because of the inefficiency of the block codes using bit-by-bit detection,

they will not be considered further. Concatenated codes do not hold much promise

for this system. Briefly, the concatenated code concept is as follows: Perform

block coding on the data stream, and having encoded the data stream, perform block

coding on it again, but not necessarily with the same coding scheme. This can be

quite efficient in terms of achieving extremely low error rates. However, for

the error rates of interest here, insignificant improvement over straight block

coding with word detection is achieved while the complexity of the system is

increased. This technique will therefore not be further considered in this section.

For further information the reader should consult Reference 5.4-4. Only techniques

b, d, and e will be considered below.

Encoder Characteristics - The encoder functional diagrams are shown in

Figures 5.4-7 and 8. As can be seen the biorthogonal encoder and convolutional

coder without interleaving are both relatively simple. The hybrid encoder is more

complex. However, using integrated circuit modules, the hardware involved is not

too complicated. The most complex (i.e., the encoder requiring the greatest amount

of hardware) is the convolutional coder followed by an interleaver.
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Interleaver Requirements for Sequential Decoding - Whenever a carrier or

subcarrier tracking loop loses lock the link experiences burst errors. This

degradation, due to coherence loss, can be reduced by interleaving the bits in

the transmitted data stream. This performs the function of converting the channel

from one with memory to one without memory and improves channel efficiency (see

Reference 5.4-3).

In order that the burst errors do not disrupt the decoding operation, inter-

leaving can be introduced such that adjacent transmitted symbols actually occur in

real time intervals separated by T = i__ where 2B L is the tracking loop two-sided
2B L

bandwidth.

Interleaving can be performed to any degree. If we seek to ensure a time

separation between all adjacent data bits we must insert a time delay of T between

them. One way is illustrated in Figure 5.4-9. As shown the data would be read

into a buffer a row at a time and then read out a column at a time.

If adjacent transmitted symbols are to be spaced in time by T we have,

T = T b V_s T V

V and N = Ts Tb2_

where T = transmitted symbol period

s 1

T b = transmitted data bit period

v = rate of encoder

In order to accumulate N inputs to a column we must let k=N. The capacity of the

buffer for this condition is:

Figure 5.4-i0 presents the buffer requirements for three operating symbol rates

and three loop bandwidths. As can be seen the capacity requirements increase

enormously as the data rate rises or the loop bandwidth drops.

Minimum Interleaver Implementation - The simplest interleaver implementation

requires enormously reduced hardware requirements. Its implementation is as follows.

Assume a rate-three encoder and delay the first bit by zero time, the second bit T

seconds, and the third bit by 2T seconds. The output of the three delay circuits

can then be readout sequentially to provide a symbol stream of adjacent symbols in

real time which are now spaced in time by T seconds. Figure 5.4-9 illustrates the

minimum interleaver system for T = 3T where T = symbol period
s s
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INTERLEAVER CHARACTERISTICS
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Figure 5.4-9

MAXIMUM INTERLEAVER REQUIREMENTS

Capacity -- N2 =\ __"Z_-'/_I_L/

SYMBOL RATE

Capacity
N2

100 bps

2 BL, Hz

12 5 I

600 3.5K 95K
Bits Bits Bits

500 bps

2 BL, Hz

12 5 1

16K 90K 2.2M
Bits Bits Bits

1000 bps

2 BL, Hz

12 5 1

60K 350K 9M
Bits Bits Bits

I Figure 5.4-10

5.4-17

I REPORT F694. VOLUME Ill • PART B • 31 AUGUST 1967

IIIIOI_OIIIIIIELL llStRglillllltlO_l



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

There is a difference between this interleaver and the maximum interleaver.

The maximum interleaver of places all symbols, within any real time period (T),

mutually spaced in the transmitted symbol stream by at least T seconds. The

minimum interleaver has the characteristics such that in any time period T,

there will be symbol outputs (for any chosen symbol and position) from the

same position which occurred only T- seconds previously. When the symbols are

unscrambled at the receiver there will be T/T s successive symbols in error in the

first position in some time period T. The same will be true for symbols in the

second and third positions in different time slots of length T.

The only work performed to data on simulation with interleaving appears to

have been performed by Dr. Jacobs of the University of California at San Diego and

his students. The work, however, is not sufficiently detailed to show the exact

variation of coherence loss versus degree of interleaving. What does appear to

with T equal to the error burst period, the coherence degradation is reduced to

approximately 0.i db B for a signal to noise ratio of 13dB.

The storage requirements are quite large for a data rate of 1200 bps. It is

believed (personal communication from Jacobs) that the degree of interleaving shown

in Figure 5.4-9 will reduce coherence loss the same amount. This defines the storage

requirements for a data rate of 1200 bps. The storage register length is 192 for

a 2B L of 12 Hz, 480 for a 2B L of 5Bz and 2400 for iHz.

This appears to he a very small amount of hardware to achieve an improvement

of 0.9 dB in system power efficiency and should be used. However, it has not been

demonstrated that this degree of interleaving is indeed adequate and a study is

presently underway by Dr. Jacobs to settle this question. The results of the study

should be available within a year.

Decoder Characteristics - The simplest decoder is probably the block code

(biorthogonal) decoder. It can be provided as a special purpose piece of equip-

ment or it can be programmed on a computer (see Reference 5.4-1). Even this decoder,

however, is a relatively complex unit. The sequential decoder for the con-

volutional coding and the hybrid system decoder would be implemented only on a

computer although the sequential decoder can be implemented as a special purpose

compute. Since all three decoders are complex, none has much advantage in this

respect. However, in order of increasing complexity, they rate as: biorthogonal

decoder, sequential decoder, and hybrid decoder.

Of particular interest in decoder characteristics are the simplifications to

5.4-18
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the Fano decoding algorithm described by Jacobs in References 5.4-3 and 5.4-4. An

optimum algorithm is desired in order to minimize overflow probability. Briefly,

the first simplification is to eliminate the variable @ from the algorithm I. The

other simplifications relate to restricting some of the possible motions a computer

would follow in searching the tree for the proper code. Gallager has suggested an

additional change which amounts to always searching the 0 branch first rather than

the best branch. This would seem to permit a simple implementation, but require a

longer search; however, it has been shown that a best branch search can be accom-

plished without additional complexity. Better decoding algorithms do not appear to

exist.

Power Requirements - The efficiency of the link is improved if the power require-

ment for data transmission at a fixed rate is reduced. A direct measure of the power

ST b _ Energy per Data Bit This is discussed in References 5.4-i
requirements in the No Noise Power Density"

and 5.4-2 for the biorthogonal codes, in Reference 5.4-3 for sequential decoding,

and in Reference 5.4-5 for hybrid decoding. The power requirements for biorthogonal

coding and sequential decoding are derived below.

Sequential Decoding - On the basis of the data in References 5.4-3 and 5.4-4 let

K = 24, r - 3; we obtain:

Cause Requirement or Degradation

Theoretical Minimum - 1.6 dB

I
I

I

I

I
I

I

I

(i)
(2)
(3)

Quantization, Q = 8

Rate, r = 3

Sync and Tail

Reference Incoherence, SNR = 13 dB

Degradation 2 of _ > i

= i

Without interleaving, SNR = 13 dB

Without interleaving, SNR = 16 dB

Without interleaving, SNR = 19 dB; or

with interleaving, SNR = 13 dB

Biortho_onal Codin_ (16_ 5)

Cause

Theoretical Minimum

Quantization, Q = 8

+ 0.2 dB

+0.6 dB

+ 0.06 dB

+ 1.0 dB (I) + 0.5 dB (2) + 0.1 dB (3)

+ O. 14 dB

+ 3.0 dB

+ 3.4 dB + 2.9 dB + 2.5 dB

Requirement or Degradation

+ 3.3 dB

+ 0.5 dB

@ is a variable in memory which determines when the running threshold would be

tightened (see Reference 5.4-5).

is the exponent in the Pareto distribution for the sequential decoding computational

time.

5.4-19
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(Continued)

Cause

Synchronization

Reference Incoherence

Requirement or Degradation

+ 0.6 dB

4.4 dB+ A

The magnitude of the data power degradation caused by the incoherent reference

(loss of carrier lock) for biorthogonal coding is not known. There is no doubt

that it will degrade performance. What must be done is to increase the carrier

power to the point that loss of lock occurs sufficiently infrequently that the

degradation is negligible. It would seem that a SNR in the carrier loop of the

same order of magnitude as used for sequential decoding (i.e. about 16 dB)would

be adequate. This is a high carrier power requirement but, what is more important,

is that total power requirements are made as low as possible, (i.e., data plus

....... _.... j. F_ _=_^^--i=_loop bandwidths u_ 12 eps or less and data rates or Juu

bps or higher the ratio of data to carrier power requirement is i0 dB or more. In

this case, the system improvement available is the data power reduction of 1.0 dB

which, all things being equal, is still worth achieving. For any low data rate we

must determine the magnitude of A. In any case, sequential decoding will be superior

by 1.0 dB or more.

Detection Equipment Characteristics - The modulation technique to be used on

the high data rate link is PCM-NRZ data modulation PSK on a square wave subcarrier.

The subcarrier frequency selected should be equal to the transmitted symbol rate

or some integral multiple of it. A block diagram of the subcarrier demodulation and

sequential decoding equipments is shown in Figure 5.4-11.

The squaring phase lock loop has been analyzed (Reference 5.4-6) together

with an evaluation of the required ratio of data rate to loop bandwidth vs. the

resultant data degradation (Reference 5.4-7). This information has been compactly

summarized in Reference 5.4-8 from which we find that, for a data rate (_) to one

sided loop bandwidth (BL) ratio of 90, the data degradation is 0.25 dB. This

represents a mean value of loop error of approximately 13.5 ° for which case the

signal to noise is about i0 dB. It was stated above that the signal to noise in the

two sided loop bandwidth should be 16 dB (without interleaving) in order to keep the

degradation due to the burst errors below 0.5 dB. This requires a _/B L of 360

(4 x 90) for 2BL = icps, _ = 180 bps. Our operating data rates will all be

considerably higher than this.

Figure 5.4-11 presents a block diagram of the data demodulation equipment
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interface between the receiver output and the compute. The block diagram is self-

explanatory except perhaps for the sync gate logic. In this diagram the sync gate

logic is sensing the polarity of the frame sync detector output to resolve the

ambiguity of the subcarrier as well as providing the standard sync gate operations

during frame sync search and in lock modes.

The detection equipment characteristics are presented in detail in Reference

5.4-1 and -2.

5.4.2.2.3 Comparison of Alternate Coding Techniques - Figure 5.4-12 summarizes the

comparison of the alternate coding techniques evaluated above. As shown the

hybrid coding scheme cannot be seriously considered at this time because it is not

sufficiently well defined; it is however the most efficient technique. The

biorthogonal technique has the simplest encoder and possibly the simplest decoder.

It will also be flown on the Mariner '69. However, the sequential decoding scheme

only slightly more complex than those for the biorthogonal coding system.

Considering these facts and because sequential decoding is at least i dB more

efficient, it is recommended that sequential decoding with convolutional coding be

used.

The characteristics of the encoder are as follows:

K = constraint length = 24

v = rate = 1/3

A systematic code should be used, i.e. the first chip of every 3 chip data

symbol will be identical to the data bit. Dr. Jacobs has shown that such a code

is as efficient as non-systematic codes and in addition the computer requirements

are enormously reduced.
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5.4.3 Low Data Rate Link - The purpose of the low data rate link is to provide a

primary link prior to initiation of high data rate link operation and a back-up

mode of operation should the high data rate link fail. The data will contain

engineering and low rate science data.

In order to completely define the Low Data Rate Link three phases of study were

defined. The first phase was directed toward defining a modulation technique which

would permit continuous operation at a low data rate. It was concluded that multi-

ple frequency shift keying (MFSK) modulation is the best choice to maximize effi-

ciency on the link.

A second study was made to compare the efficiency of transmitting continuously

at a low rate with that of transmitting in short bursts at an increased rate. The

study showed that continuous transmission at a low rate is more efficient.

An evaluation of receiver design was conducted to determine the type best

fast Fourier receiver is the most efficient and versatile of those compared.

5.4.3.1 Modulation Selection - It is desired that the low rate link operate with

no more than 5 watts transmitter power and an antenna gain on the order of -i dB

(hemispherical coverage). At the maximum operating range expected for the 1973

VOYAGER mission the received S/N ° at the DSIF communication links have been coherent

systems because, at their operating data rates, coherent techniques have been the

most efficient. In order to have a coherent link however, we must provide a co-

herent carrier. In this case the carrier must operate with a minimum receiver phase -

lock - loop bandwidth of 5 Hz and a minimum signal-to-noise ratio in the range of

6 to 9 dB. To establish the coherent carrier alone, disregarding the data power

requirements for the moment, we must have a received S/N ° of from 13 dB to 16 dB.

Because we do not want to reduce the antenna coverage, this represents a transmitter

power of from 30 watts to 60 watts to satisfy the coherent reference requirements

above. Obviously this is unacceptable. Even if it were possible to reduce the

receiver loop bandwidth to i Hz the power required is between 6 to 12 watts which

is still excessive.

The preceding discussion has ignored the question of the required system band-

width because of oscillator instabilities, Doppler and Doppler rates. Because

Doppler and Doppler rates must be accommodated by any system we will disregard them

for the moment. Oscillator instabilities, on the other hand, become of primary

importance for this low data rate link. Considering again for the moment a coherent

system, a large loop bandwidth 'tracks out' the oscillator instabilities and they

5.4-24
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have small effect on system power requirements. As the system bandwidth drops and

approaches the oscillator phase noise bandwidth it becomes incapable of tracking the

oscillator instabilities. This problem is encountered in both coherent and non-

coherent systems but is much more severe in a coherent system.

Because of all these various considerations it becomes apparent that non-co-

herent modulation techniques must be used for maximum efficiency. Studies of sys-

tems displaying the above defined characteristics have led to the conclusion that

the optimum technique is a noncoherent operation with orthogonal signals (See

Reference 5.4-9, -i0, -ii and -12). It must be pointed out however that these pre-

vious results indicate power requirements which are either excessively optimistic

(e.g. Reference 5.4-11) or pessimistic (References 5.4-10 and -12). A more exact

analysis has been performed which, it is believed, more truly represents the charac-

teristics of the system (See Section 5.4.3.4).

MFSK vs Orthogonal Coded Binary FSK - To transmit orthogonal non-coherent sig-

nals either multiple frequency orthogonal signals (MFSK) or orthogonal binary codes

on non-coherent FSK may be used. An analysis comparing the two was performed with

the assumption that an optimum receiver is used for the binary system and a subopti-

mum receiver (correlator plus envelope detector) for the MFSK system. The conclusions

drawn were:

a. For these conditions approximately 3 dB more power is required for the

binary system.

b. The binary system is less sensitive to frequency mistuni_g by a factor (i)

C.

T
s

2
sin (2hA f k2 k ) i

FI =

sin 2 (2_& f Ts) k2 k

Af = frequency offset

The MFSK system is less sensitive to timing offset by a factor

I

I
I

I

1
F2 =-- .

k2 k

The system characteristics are tabulated in Figure 5.4-13.

In Section 5.4.3.4 it is shown that the MFSK system degradations will be on

the order of 0.5 dB each because of frequency and timing offset. At least 2 dB

less power is required for suboptimum MFSK than for perfect binary orthogonal coded

FSK. Based on these results the selected modulation technique is MFSK.

(1)These parameters are defined in Figure 5.4-13.

5.4-25
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SYSTEM/

PARAMETER

Coding Charac-
teristics

Receiver and

Error Rates

Degradation
Characteris

tics

COMPARISON OF ORTHOGONALLY CODED BINARY FSK vs. MFSK

FSK, ORTHOGONAL BINARY CODE

M = Number of binary code-- 2 k

M = Chips per code

k = Data bits per code

T b = Bit period
Tb T

--_ ms -- Chip pe_riod
Tc 2k = k2 k

Optimal Non-Coherent Receiver

PB < _ exp- 8No - S/No

power loss a

M ST ST s
= exp

2 N O 8N °

Mistuning: Af = Frequency offset

Sin 2(2rrAf Tc)

(2rr A f To)2

Timing: r -- Timing error

r r k2k
power loss a -- =

T c T s

MFSK

M = Tones or symbols = 2 k

k= Data bits per symbol

T b = Bit period

T s = kT b = Symbol period = k2kTc

Spectra; Analysis Detector

PB < ½ exp b ST 1I- N% E" (R)

Sub Optimal Decoder

M !sT(sTs)PB < -2 exp - ,h-o_o,

Mistuning: Af-- Frequency offset

Sin 2(2rr A f Ts)
power loss a=

(2 rr A f Ts)2

Timing: r = Timing error

r r

power loss a_ =

Ts k2k T c
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5.4.3.2 Data Rate Optimization - Section 5.4.3.1 established the fact that MFSK

is the optimum modulation technique for continuous operation at a data rate from

0.5 bps to i0 bps. However, the question arises whether or not another choice

involving "burst transmission" with a proven method of modulation suitable for the

higher power short period operation might be optimum. This choice is evaluated

below for three data quantities: 28,800 bits, 86,400 bits, and 288,000 bits. For

a continuous minimum rate link the data rates are 1 bps, 3 bps, and i0 bps

respectively, assuming an 8 hour communication period.

Design Approaches and Significant Characteristics - Two modulation techniques

are considered. The first is a MFSK system, M = 16, operating for 8 hours at a

constant data rate. The second is a coded PSK/PM system operating for a short

period of time (burst transmission) but at data rates of 10 bps and above.

The parameters considered in this study are listed below:

a. Weight of power output device

b. Weight of power supply (battery weight)

c. Development status of power output device

d. Antenna breakdown

e. Utility (availability of data)

f. Acquisition Time

g. Reliability

Figure 5.4-14 lists the required transmitter powers for the various DSIF

receiver bandwidths for the PSK/PM system.

Antenna Breakdown - McDonnell's tests on an exposed S-Band helix in three

atmospheres have shown limiting power handling capabilities of 160 watts in air,

130 watts in VM-2, and 100 watts in VM-4. Power handling capability can be

improved significantly by immersing the radiator in a dielectric material. Tests

on the Mercury S-Bank antenna -(a fused silica filled, cavity backed hellx)-

resulted in breakdown at power i0 times higher than on an exposed helix. However,

the selection of dielectric material in this antenna is critical, since the

antenna efficiency is reduced by dielectric losses.

Weight and Power Required for Storage - For an assumed constant race of data

generation we can say that a 14K bit memory for storing nighttime data is required

for the 1 bps llnk. If burst transmission is used, as much as a 28K bit memory

may be required. The approximate weight and power required for the 14K bit memory is
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REQUIRED TRANSMITTER POWER FOR VARIOUS DSIF RECEIVER BANDWIDTH

DSIF RECEIVER
D A k I r%_l/I r_ "T'I..I

2BLo Hz

1

5

12

REQUIRED TRANSMITTER POWER, WATTS

UNCODED
10 bps 100 bps

115 890

186 1000

234 1200

CODED
10 bps 100 bps

63 316

105 407

158 490

TRANSMITTED ENERGY, WATTS-HR dB*

CODED10 bps 100 bps
I

17.1 14.0

19.2 15.2

20.8 16.0

UNCODED
10 bps 100 bps

19.7 18.5

21.6 19.2

22.2 19.4

* For transmission of 28,800 bits
For transmission of 86,400 bits add4.8 dB
For transmission of 288,000 bits add 10 dB

Assumed Link Parameters
Transmitter Antenna Gain: 0 dB
Range: 2.5 x 108 km at 2295 MHz
DSIF: 210 ft Antenna, Maser Preamp
Convolutional coding with a sequential decoder
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3 pounds and 1.4 watts whereas, for the 28K bit memory, it is 5 pounds and 2 watts.

Since the difference in weight (2 ibs) and power (0.6 watts) are both small, the

added weight and power for burst transmission will be neglected.

Transmitter Power and System Weight - Assuming zero dB antenna gain and convo-

lutional coding with sequential decoding on the PSK/PM links we can define the

transmitter power and weight requirements. It is assumed that the DSIF receiver

loop bandwidth is 5 Hz minimumbecause it has been specified that narrower loops will

not be implemented by 1973.

Figures 5.4-15, -16, and -17 present a comparison of the characteristics of

the systems for the three assumed data loads. The receiver loop bandwidth has been

optimized at 5 Hz for minimum power requirements. The recommendation in each case

is clearly the use of MFSK.

5.4.3.3 Backup Capability - The baseline low data rate link can provide a backup

_=_=u_ low _ _4^_ _+_ T_ _^_ _.._._ _o_ ,,_ _°

total high rate link data requirement regardless of any special techniques (e.g.

compression) which might be used. Possible high rate science backup links are

discussed in Section 5.4.4.

5.4.3.4 MFSK Receivin_ System - The low data rate backup link is power limited.

As discussed previously, MFSK modulation has been selected so as to maximize the

data rate However, the best practical receiver design has not been previously

defined. A study was therefore undertaken to evaluate several possible receiver

implementations.

Receiver Functional Requirements -The objective of the MFSK receiver is to

determine which of M (e.g. M = 16) tones was sent over a communication link with a

required degree of reliability (e.g. Pb _ probability of bit error _ 5 x 10-3).

Since the data rate is less than one bit per second, an MFSK symbol will be about

four seconds long. Thus for a standard optimum non-coherent (in phase and quadra-

ture) receiver, the oscillator instabilities and uncompensated doppler effects have

to be less than a small fraction of 0.25 Hz. This small frequency deviation is

clearly impossible with present technology and highly unlikely in the near future.

Thus the receiver must cop, with the problem of frequency uncertainties on the order

of the data bandwidth.

There are several reasonable models for the frequency instabilities involved.

One possible model assumes the oscillator to be a perfect sinusoid whose frequency

jumps randomly from symbol period to symbol period according to some probability

density over any time period (T = 4) at a data rate of i bps for M = 16.
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I COMPARISON OF ALTERNATE APPROACHES FOR 28,800 BITS REQUIRED

I

I
I

I
I
I

I
I

I
I

I

I

I

FUNCTIONAL AND

TECHNICAL DESIGN

REQUIREMENTS

Emergency transmission

of 28,800 bits of data
over direct S-band link

with antenna gain of 0 db

Trade Cons iderations

Weight of power output
device plus power supply

(batteries)

MATRIX OF DESIGN APPROACHES

NO. 1

MFSK M = 16

1 bps
8 hours

40 lb.

NO. 2

Coded PSK/PM
10 bps

48 min.

2BLo = 5 Hz

55 lb.

NO. 3

Coded PSK/PM

100 bps
4.8 min.

2BLo = 5 Hz

178.5 lb.

SELECTION

Selected Approach

No. 1

1-2-3

Development status of Available Feasibility Study No Study 1-2-3

power output device (10 watts) (100 watts) (400 watts)

Antenna Breakdown Negligible Possible Major Problem 1-2-3

Difficulty

Utility Constantly Available Available 1-2-3
Available 48 min. 4.8 min.

Acquisition Time - Minutes Minutes Insufficient Data

Reliability - - - No Data
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COMPARISON OF ALTERNATE APPROACHES FOR 86,400 BITS REQUIRED

FUNCTIONAL AND
TECHNICAL DESIGN

REQUIREMENTS

Emergency Transmission
of 86,400 bits of data
over direct S-band link
with antenna gain at 0 db

Trade Considerations

Weight of power output
device plus power supply
(batteries)

MATRIX OF DESIGN APPROACHES

NO. 1

MFSK M = 16
3 bps
8 hours

49 Ib

NO. 2

Coded PSK/PM
10 bps
2.4 hours

2BLo = 5 Hz

NO. 3

Coded PSK/PM
100 bps
14.4 rain.

2BLo = 5 Hz

73 Ib 190 Ib

SELECTION

Selected Approach

No. 1

1-2-3

Development status of Available Feasibility Study No Study
power output device (20 watts) (100 watts) (400 watts) 1-2-3

Possible
Antenna Breakdown Negligible Difficulty Major Problem 1-2-3

Utility Constantly Available Avai lable 1-2-3
Available 2.4 hours 14.4 min.

Acquisition Time - Minutes Minutes Insufficient Data

Reliability - - - No Data
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COMPARISON OF ALTERNATE APPROACHES FOR 288,000 BITS REQUIRED

FUNCTIONAL AND

TECHNICAL DESIGN

REQUIREMENTS

Emerson c-_, Transmission

of 288,000 bits of data
over direct S-band link

with antenna gain of 0
dB

Trade Con sideration s

Weight of Power Out-

put Device Plus

Power Supply
(Batteries)

MATRIX OF DESIGN APPROACHES

NO. 1 NO. 2

MFSK M- !6

10 bps
8 hr

68 Ib

Ceded PSK/PM

10 bps
8 hr

2BLo = 5 Hz

100 Ib

Development Status of Development Feasibility

Power Output Device Study (50 Study (100
watts) watts)

Antenna Breakdown Negligible Possible

Difficulty

Utility Constantly Constantly
Available Available

Acquisition Time - Min

Reliability

NO. 3

100 bps
48 min

2Bko = 5 Hz

210 Ib

SELECTION

CAI----A--J A ...... L

No. 1

1-2-3

No Study 1-2-3

(400 watts)

Major Problem 1-2-3

Available 1 or 2-3

48 min

Min Insufficient Data

No Data
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The uncompensated doppler and temperature variations can be accounted for by assum-

ing a drift of the center frequency. In our studies (Reference 5.4-13) it was shown

that the optimal receiver (neglecting drift) for this model determines M decision

variables z. (j = i, .... , M) and decides the tone sent by finding _e "j" correspon-
3

ding to the largest z.. The decision variables were obtained as:
3

zj=_!:(a(m)).P(_-_j)dm_ (i)

where P(m - mj) = probability density of "jumping" frequency about nominal center

frequency m..
3

where s(t) is received signal plus noise.

s(t) sin mtdt 2

..... o, _.e ._. l_.==_ operation i_ equation "_ is...... %12

equivalent to

=/ L(m) P dm (3)Zj (m-mi)

This receiver has an interesting interpretation. The function, a(m), can be

seen to be the amplitude-spectrum-squared of received signal and the decision var-

iables zj are obtained by appropriate weighting and sunning of these spectral values.

Thus, this receiver has M filters whose amplitude bandpass characteristic is speci-

fied by p(m). Note that p(m-mj) - 6(m-mj) reduces Equation (3) to the standard

optimal non-coherent receiver. Hence, the optimal receiver performs an amplitude

spectral analysis and weights the spectral values appropriately. This form of

receiver is also optimal for several different oscillator models and criteria as

shown by Viterbi, (Reference 5.4-14) and Greenspan and Chesler, (Reference 5.4-15).

The receiver is most easily implemented by band-limiting the incoming signal,

sampling,and performing a digital spectral analysis over the T second record. This

gives spectral samples spaced at I/T Hz, the maximum density for independent

frequency samples for a T second record of white noise. Thus, in some sense, all

the information in the signal waveformis embodied in these frequency samples. Under

these conditions Equation (3) becomes a weighted summation.

Thus, the desired receiver should obtain a filtered amplitude spectrum and

determine the symbol sent by finding the largest of M decision variables. It would

be desirable to have the system performance relatively insensitive to actual oscilla-

tor frequency spectra and phase processes since exact determination of these

5.4-33
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oscillator characteristics is quite difficult. In order to do this it will be

necessary to consider receivers which, if an exact frequency uncertainty model

existed would most likely be suboptimal. An example of a good receiver is one em-

ploying a rectangular band pass filter. The bandwidth of the filter must be large

enough to ensure that most of the time most of the signal energy will be contained

in the pass band. For example, if p(_) were gausslan with mean zero and standard

deviation 0.23Hz (corresponding to a short term oscillator stability of i:i0 I0 at 2.3

GHz) then a bandwidth of 1.5 Hz _ 0.75HZ) would give a probability of less than

2.5 x 10 -3
that the signal energy is outside the filter. However, if the true

center frequency can be offset as much as 0.2 Hz, then this probability increases

to 8 x 10 -3.

A second desired operation for this receiver is the ability to track the center

frequency of a slowly drifting tone spectrum. It appears at the moment that the

only available information on the ............. lu,_ .... _I_+__ ^_ULXIL L_L_ x_ term frequency =_=u_o _

the basic oscillators and estimates of maximum drift rate due to uncompensated

doppler. Hence an AFC (Automatic Frequency Control) loop must be capable of follow-

ing the long-term drifts of the system without catastrophically increasing the

required bandwidth of the band pass filters. It is precisely the umknown and

unpredictable nature of the AFC tracking errors that requires the receiver

to be insensitive to the actual signal energy distribution in the decision

bandwidth. Because of the "large" phase variations and the small signal powers,

phase-lock AFC's will not operate satisfactorily. The AFC's considered here are

effectively based on the output of frequency rather than phase information. This

informationcan be obtained using conventional (digital, analog) filters on the

outputs of a spectral analysis program. The former is best when there is no spectral

analysis performed while the latter appears to be best when a spectrum is obtained.

Since there is a possibility that the receiver will go out of lock, there

should be some procedure to indicate loss of frequency lock and to initiate reacqui-

sition. This can be done in two ways. The first procedure demodulates the known

sync tone and counts errors. It decides that loss of lock has occurred if there are

more than three errors in four successive sync symbols. A second, but more complex

procedure, filters the value of the decided decision variable z. and states loss
3

of lock has occurred when the filtered output drops below a specified value. Finally,

the receiver is required to initially acquire the sync tone frequency and to obtain

chip sync. Several approaches are considered for both.
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5.4.3.4.2 Design Approaches and Significant Characteristics - Two major configura-

tions for the desired receiver operation were considered. The first is called the

"Comb-Filter Receiver" and is characterized by a bank of bandpass filters, each

tuned to a single MFSK tone. These are followed by squarers and integrators which

are sampled and dumped every T secondS. The tone corresponding to the maximum of

the M outputs is that considered sent. The AFC network consists of two stagger-

tuned filters whose output difference is filtered and used as an error signal for

the VCO. The AFC network must operate on a periodically available sync tone in

order to obtain sufficient loop signal-to-noise ratio.

The second major configuration is called a "Spectral Analysis Receiver." This

receiver performs a spectral analysis on a T-second length of data and uses the

subsequent spectral information to operate a novel AFC loop and loss-of-lock indi-

Except for the analog comb-filter receiver, the systems considered are allcator.

b

O

O

Comb-Filter Receiver - The comb-filter receiver can be realized with either

analog or digital elements. The analog and digital mechanization of the

receiver is shown in Figure 5.4-18.

These two configurations were analyzed only in sufficient detail to determine

that: (i) their implementation would be quite complex, (2) the analog comb

contains several difficult hardware design problems which must be solved,

(3) the digital comb filter could indeed be designed with state-of-the-art

equipment but when an adequate system was assembled it represented a large

amount of hardware. The digital comb filter can be implemented on a computer.

If this is done, it is preferable to implement a spectral analysis receiver

as discussed below. The various characteristics of the comb filter receivers

are discussed in detail in Reference 5.4-16.

Spectral Analysis Receiver - This receiver accomplishes the data detection

operations by performing a spectral analysis on each of the incoming channel

symbols. Block diagrams of two spectral analysis receiver configurations

are shown in Figure 5.4-19. The autocorrelation receiver obtains the energy

spectrum by finding the autocorrelation function of the sampled incoming

waveform and then performing a Fourier transform, usually by an appropriate

matrix multiplication. The fast Fourier receiver obtains a periodogram of

the sampled incoming waveform directly using a "fast Fourier transform."

Both systems employ special procedures to reduce the sampling rate required

at the detector. Since the autocorrelation receiver does not normally
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SPECTRAL ANALYSIS RECEIVER BLOCK DIAGRAMS

Auto Correlation Receiver

Freq
Down

Converter

T

Ana log
Filter

Low Pass

_ST Spectral

Analysis

Auto Corr

ync

one

I
I

Max

J
L

Fast Fourier Receiver

Freq
Down

Converter

Analog I

_ Filter I

Low PossJ

l NCO J

Spectral

Cor_

_Analysis I._-j_ _ah_aWx̀nd°w

JFast Fourie.rl _ j

Decision

Directed
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provide fine structure information, the AFC network required would be like

that described previously for the digital-comb-filter receiver. The fast-

Fourier-transform receiver provides spectral information spaced I/T Hz apart.

A weighted average of the samples about the nominal center frequencies of

the tone form the decision variables and a second weighting is used to form

an estimate of the true frequency offset for use in the AFC network. Thus,

the AFC network in the fast-Fourier-transform receiver uses readily available

information while the AFC network in the autocorrelation receiver must func-

tion separately. Although, for both systems, frequency correction may be

obtained using analog mixing and a number controlled oscillator (NCO), only

for a fast-Fourier receiver can tone separation be specified with east to the

nearest I/T Hz. The autocorrelation receiver tone spacing is specified by

the truncation length of the sample autocorrelation function and is not

easily changed. 1_nus for the autocorrelatlou receiver, ....LL*_tones must b=

evenly spaced. The tones may have a spacing greater than (i/2Tm) Hz where

Tm is the cutoff length of the autocorrelation function (Tm is the maximum

separation of samples multiplied together to form autocorrelation) but must

have spacings which are multiples of 1/2 TmHZ. Thus, guard bands between

tones are more easily and precisely specified with the fast-Fourier-transform

receiver than with the autocorrelation receiver.

For initial frequency acquisition, both receivers will form a spectral anal-

ysis over the region of frequencyuncertainty. Here again, the efficiency

of the fast-Fourier transform gives it the advantage. For initial chip

sync, there is really little to choose. Both these receivers can obtain

frequency acquisition and chip sync with only minor modification of their

computer programs. This is a major advantage over the comb-filter receivers.

5.4.3.4.3 System Performance - For no receiver degradations all systems described

have an Eb/N ° vs. signal bandwidth (M = 16) as shown in Figure 5.4-20. The parameter

is the time-bandwidth product (TB) and, for the various receivers described, is

determined as follows:
^

o Comb-filter receiver: B is noise bandwidth of the data filter.

Then, TB
o Autocorrelation receiver: T is the truncation point of the autocorrelation

m

function. Then, TB = T/T m.

o Fast-Fourier receiver: TB is the number of values of the spectrum used in

the determination of the decision variable.
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For each of these receivers, degradation occurs if the signal is not centered

in the pass band of the filters. For non-perfect operation of the AFC network, the

resulting frequency offset will contribute to degradation of the total system. This

degradation depends on the particular configuration under consideration being least

for the fast-Fourier receiver.

There is also degradation due to imperfect chip sync. This will be the same

for all systems.

5.4.3.4.4 Comparison of DesiKn Approaches - Because of the difficulties involved

in the comb filter receiver it will not be discussed further.

A description was given above for the spectral analysis receivers. In order

to perform a comparison it is necessary to determine their signal-to-noise degradation

characteristics which then define the true input signal to noise ratio required at

the receiver input.

an increase in power requirements above the theoretical. These are signal power

loss due to frequency offset, increased signal power to obtain an acceptable loss

of lock probability using the AFC, and increased power to obtain adequate acquisition

characteristics. The final part of this section indicates the required (S/N o) after

incorporating all the above losses for the best receiver. We start first by defining

the losses.

o Loss of SiKnal to Noise Ratio Due to Frequency Offset

Autocorrelation Receiver - The frequency offset is caused by the imperfect

operation of the AFC loop. The autocorrelation receiver obtains the auto-

correlation function of the T second sample. The autocorrelation function

is truncated at T and then inverted to form the spectrum. The resulting
m

spectrum will have frequency samples spaced at 1/2 Tm Hz. Assuming the input

to be a sinusoid, an estimate of the signal energy loss in terms of frequency

offset and T has been derived. The relationships thru the sinc function
m

(which is the spectral window characteristic for the autocorrelation re-

ceiver) of the several parameters of interest are shown in Figure 5.4-21.

These parameters are:

d - argument of sinc function, degrees

A - frequency offset, Hz

T - truncation point of autocorrelation function
m

q - reduction in=signal power (or signal to noise ratio).

Figure 5.4-22 also tabulates the loss for A= 0.75Hz for various values of TB

product.
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AUTOCORRELATION RECEIVER FREQUENCY OFFSET DEGRADATION CHARACTERISTICS

1

0.5--

-360 -270 -180 -90

-1/2rma x-1/rma x

qdB

AND q FOR LOSS IN SNR

Sinc x

0 90 180 270 360 deg

.__ I/rma x Hz0A -',- 1/2 rmax

CORRESPONDENCE OF d, A, 1/rMA x

X
Figure 5.4-21

AUTOCORRELATION RECEIVER FREQUENCY OFFSET DEGRADATION CHARACTERISTICS

SIGNAL
LOSS
qdB

.1
.2
.3
.4
.5
.6
.7
.8
.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

III

EQUIV

deg
d

21.6
30.0
36.5
42.0
47.1
51.5
55.5
59.25
62.5
65.75
68.75
71.75
74.5
77.15
79.75

90.5

L = 360
AT d

max

16.7
12
9.87
8.57
7.64
7.0
6.59
6.08
5.76
5.475
5.23
5.02
4.83
4.67
4.52

3.98

TB PROD

360
_A.T
d

A = .75,
T = 4

III

51
36
29.5
25.6
23
21
1q.8
18.2
17.3
16.4
15.7
15
14.5
14.0
13.6

12
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ADDITIONAL
LOSS OVER
MIN. TB = 6

Pe = 10-3,
M= 16

2.8
2.4
2.1+
1.9
1.8-
1.65
1.55
1.47
1.4
1.3
1.2
1.13
1.1
1.05
0.97

0.9
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TOTAL
LOSS
dB

2.9
2.6
2.4
2.3
2.3
2.25
2.25
2.27
2.3
2.3
2.3
2.33
2.4
2.45
2.47

2.9
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Fast Fourier Receiver - An equivalent passband for this receiver is sketched

in Figure 5.4-23. It can be seen that the worst case occurs when the signal

is in the "dip" nearest the edge of the passband. For A = 0.75 Hz, a time

bandwidth product of 7 (6 minimum) is required. The total minimum signal

energy is found by adding up the signals in the 7 incremental passbands.

Thus we get, for a signal midway between the "+2" and '_3" cells the follow-

ing totals:

Example Cell Energy X °

(sinc2X)

m

+3 .405285 90

+2 .405295 90

+i .045032 270

0 .016211 450

-i .008271 630

-2 .005004 810

-3 .003349 990

.888437 0.51 dB

Additional Loss (For TB=7 vs. TB=6) 0.17 dB

0.68 dB

Hence the total loss for the fast fourier transform recelver is less than

0.7 dB over the "best" receiver and less than 0.51 dB when compared to an

input with no offset.

Increase in Signal Power to Obtain Acceptable Probability of Loss of Lock -

For low signal to noise ratios, the AFC network is more sensitive to noise

than the data detection. To justify the (S/No) vs. data rate table given

in Eigure 5.4-24 a brief description of the novel AFC employed in the

fast-Fourier-transform receiver will now be presented. The analysis for the

digital filter AFC employed by the autocorrelatlon receiver is identical

except for the frequency estimate.

Exact Equivalent Model - The exact equivalent model of the AFC network is

given in Figure 5.4-25. The system obtains a noisy estimate of the frequency
^ ^

difference, Am (n), of the true frequency difference, Aw (n), using a

noisy measuring device which is described in more detail in Figure 5.4-25.
^

The noisy estimate, Ae (n), is filtered with a sample data filter whose
-i

z-transform is F(z). The final delay, z , indicates the natural delay in

the system. As is usual in these cases, neither _(n) nor A_ (n) are

available to us.
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SECOND-ORDER AFC LOOP

n

(_(n) "t'_/_'_ AoJ(n).__1,.

_(n)

z-1
m

l_z-1

1

1 - bz-1

SIGNAL TO NOISE RATIO REQUIREMENTS VS. DATA RATE FOR ADEQUATE
AFC OPERATION

DATA RATE
Bits/sec

0.5

0.6

0.8

1.0

CHIP
LENGTH

T sec

6.66

TIME
BANDWIDTH
PRODUCT

(2v + 1)

13

11

9

STEADY
STATE
ERROR,

EssHz

0.2

0.2

0.2

0.2

Parameters: h ---0.01 Hz/sec, _ = 0.23 HzSystem loss

SYSTEM
PARAMET ERS

REQUIRED
Na

b= 0.3

k 1 -- 0.28
aA2 = 0.2241 Na

b= 0.3

k1 = 0.2115
aA2 = 0.1932 Na

b= 0.5

k1 : 0.125
aA2 = 0.1304 Na

b= 0.6

k 1 = 0.08
aA2 = 0.1026 Na

of lock probability -- 10-3

< 0.054

< 0.0626

< 0.0928

<0.118

REQUIRED
S/No.,dB

9.7

8.54

6.25

4.8
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AFC NETWORKS

_(n)
Noisy

Measuring

Device

(a) EXACT EQUIVALENT CIRCUIT FOR AFC

r ...... _oi _y M'e_s u"_m_'D-_v Fce
I

f

i J Spectral Analysis
_ro(n) I _ Measurements

i rj Pl (C°+Ac°)' """' sn(Ac°+_°) A_-I --
I

Discriminator

a-s

I
I

_1

(b) DETAILED DESCRIPTION OF NOISY MEASURING DEVICE

A_(n) __ Aco(n),_

(c) APPROXIMATE EQUIVALENT CIRCUIT FOR NOISY
MEASURING DEVICE WITH GAIN K AND ZERO-MEAN

WHITE GAUSSIAN NOISE _ VARIANCE N a
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Figure 5.4-25 also shows the noisy measuring device in more detail. The out-

put of the first box is a set of spectral measurements of the noisy process. These

measurements can be considered as a spectral vector which is then dotted with the

discriminator vector, _, to give the output, A_(n). This linear operation could be

replaced by a nonlinear operation such as the centroid, median, or other measure.

Since we are going to make a major approximation next by replacing the system in

Figure 5.4-25 with an "equivalent" gain, K, and additive white Gaussian noise

with variance N a as shown in Figure 5.4-25, the exact form of the discriminator

can be determined by evaluating the new gain and variances that result.

For the autocorrelation receiver, the noisy measuring device is two stagger-

tuned digital filters which will produce an estimate whose variance is at least as

large as the best FET receiver AFC variance. This is the only place where the

analyses of these two AFC's differ.

For a discriminator characteristic, a, which produces A_(n) as an unbiased

estimate of the true frequency difference A_(n) it is shown (Reference 5.4-16)

that, when the signal frequency is Gaussian with mean zero and a standard deviation
^

a , N , the variance of A_, is bounded bya

N < 1 2V<V + 17 (2V + 17

a - <2ST)_N 6 + N4S--_To 2T2
o o

S

where _ ° is the signal to noise density ratio

(1)

(2V + i) is the time bandwidth product and T is chip time.

For typical signal conditions (S/N o = 5, T = 4, V = 3 (K - 7), (o - 0.23 Hz),

then from Equation (I)

i

N a _ (28 + 80) = 0.068

Dynamics of Second Order AFC Loop - Rather than study a general loop and

obtain general results, a specific loop was studied, namely a second-order loop,

and specific results obtained. The reasons for studying a second-order loop are

that there are only two parameters to vary, the loop remains stable for all loop

gains, and the loop tracks a constant Doppler-rate with a finite steady-state

error. The loop parameters were designed based on a tradeoff between closed-loop

frequency error variance and steady-state (noiseless) tracking error. The loop

studied is shown in Figure 5.4-24.
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The loop has zero-mean additive white Gaussian noise, fi, with variance Na,

loop gain KI, filter bandwidth parameter b, and a perfect summer (integrator) with

a delay for realizability. The transfer function for this loop with W(z), N(z),

and AW(z) being the z transforms of _(n), fi(n), and A_(n), respectively, is

I
I

I

1 N(z) F(z)
AW(z) = W(z) 1 + F(z) I + F(z)

where -i (2)

F(z) = K] z

(i - bz -I)(I - z -1)

Now, if W(z) = (hz-l)/(l - z-l) 2 corresponding to a Doppler rate of (h/T) Hz/second,

then the steady-state error, Ess , using the final value theorem is

I lim 1 - z-I h(l - b) b<l (3)
Ess = z'_iW(Z)l "+"F_ = K 1 '

i The variance of the frequency estimate, _, defined to be oA2 is found to be

oA2 = N a [iK__b] i + b
I 2(1 + b)-K I (4)

For reasonable steady state errors, it is possible to obtain the transient

I response of the loop to various Doppler rates for diverse b and K. The loop gain

K, is chosen to be as small as possible in order to minimize oA2 in Equation (4)

i but large enough to be consistent with the steady state error of Equation (3). The
filter bandwidth parameter, b, is chosen to give a slight overshoot for the given

Doppler rate.

I As an example we have:

Ess_! 0. i Hz

I h_!<0.04 Hz/chip (this is equivalent to 0.01 Hz/sec)

N a = 0.068

I Choose b = 0.3

Thus using (3) K I = 0.28

i and using (4) oA 2 = (Na)(0.2241) = O.0152
and hence a standard deviation of a A = 0.123

Calculation of Probability of Loss of Lock - The probability of no loss of

I lock is just the probability that IA_I<B/2 for the total length of the mission.

For o A = 0.12, Ess = 0.i, we have 1.5 Hz implying +5.4, -6.4 standard deviations

I giving a probability of IA_I>B/2 x For 7 hours of transmission atof 5 10-7.

I
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1 bit/sec, M = 16, T = 4, there are 7300 chips and, hence, a loss-of-lock proba-

bility of less than 3 x 10 -3 for the entire mission.

To determine the (S/No) required to operate the system for a mission loss-of-

lock probability of about 10 -3 we need 0.75 Hz (B/2) to be about 5 standard devia-

tions of _A plus the steady state error. Appropriate system parameters are chosen

with the help of the plots of loop transient response. Hence, we obtain a required

N a and solve (3) for S/N o . These requirements are given in Figure 5.4-24 for

various data rates.

o Power Requirements Due to Frequency Acquisition and Initial Chip Sync -

Because the MFSK receiver is constrained to operate in real time without loss of

data, a special acquisition sequence must precede the first datum. If the real

time constraint were removed, both frequency acquisition and chip sync could be

attempted using the data and then the tape could be run backwards to the begin-

ning with a resultant recovery of all data.

To reduce the complications and increase the efficiency of the initial

acquisition, it is proposed that a sync tone be sent continuously for several

minutes to obtain frequency followed by known frequency-hopped sequences (e.g.,

square wave modulated FSK) to obtain chip sync. This procedure is proposed in

order to alleviate the loss of SNR due to frequency offset during chip sync or

timing offset during frequency acquisition. The acquisition times (frequency and

chip sync) sum for low SNR.

Frequency Acquisition - The receiver is required to find the frequency of the

sync tone (or any other tone) to within 0.I Hz. It appears to be reasonably easy

to find the sync tone frequency to within the bandwidth of the oscillator but

exceptionally time consuming to lock in much closer. For example, frequency

resolution of 0.i Hz requires time records of, at least, i0 seconds.

Any procedure for finding the unknown frequency effectively breaks the

frequency uncertainty region into a large number of small cells and tests to

determine which cell has the signal. A filter that sweeps continuously over the

uncertainty band searches each cell sequentially while the spectral analysis

receivers search many cells in parallel.

A major difficulty arises when we wish to determine the center frequency to

an accuracy better than the bandwidth of the oscillator. This precision is

difficult because the discrimination must be made on the basis of differences in

signal energy which are small compared to the total signal energy. Hence, we
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must look for a long time in order to get decision variables which differ enough

to make a reliable decision.

A second problem that arises is due to the frequency drift of the system and

uncompensated Doppler. This can result in drifts as high as 0.01 Hz/sec which,

over i0 minutes, is about 6 Hz. Hence, the final fine-frequency determination

has to be done quickly and the AFC initialized for tracking. This leads one to

consider two-level searches. The specific two-level search recommended for the

fast-Fourier-transform receiver has the advantage of not requiring any hardware

MDE ( a software program is required).

The procedure looks at 40 successive one-second samples, performs a spectral

analysis of each, accumulates the totals and finds and saves the maximum. The

NCO is then increased by 200 Hz and the sequence repeated. Thus, to cover a

4 kHz bandwidth, the sequence has to be repeated 20 times. In order to obtain

the correct 1 Hz interval with a probability of error of 10-7, a signal-to-noise

ration, S/No, of 4 dB is required. For a nominal S/N o of 7 dB, this is a 3 dB

margin. For the total of 4 kHz uncertainty, frequency acquisition takes 20 x 40 =

800 seconds or 13.3 minutes. Unfortunately, during this time the frequency could

have drifted 8 Hz and, so, is probably not where the maximum indicates it to be.

After this initial 13.3 minutes, the NCO is then set at the indicated center

frequency less i00 Hz.

The next 20 seconds of data are divided into five, 4-second records and a

spectral analysis is made on each. The maximum of the 160 values in a 40 Hz

frequency interval centered around the nominal center frequency given above results

in the true center frequency of the spectrum to within 1/4 Hz with a probability of

error of 10-7 and a 3 dB margin. Note that during this last 20 seconds the drift

should be less than 0.2 Hz. The AFC is now initialized. Thus, the total frequency

acquisition time is about 14 minutes.

Increased Power to Provide Adequate Chip Sync - In contrast to frequency

acquisition described above, the signal powers available are not adequate to pro-

vide chip sync in a reasonable length of time. In order to obtain chip sync it is

necessary to take a rather appreciable loss in (S/No).

REPORT F694 • VOLUME III • PART B • 31 AUGUST 1967

MCDONNELL A,gTRONAUTIC.'B

• 5.4-49



I

I

I

I

I

I
I
I
I

I
I

I
I

I

I
I

I

a

Where we define

Assuming Gaussian distributions I for the decision variables, a relationship

involving an upper bound on the chip sync search time, tu , k and the signal

degradation, a, has been derived. It is

]2b m ÷ 2(l-a) _o (5)
tu - 2 ''_2

tu - upper bound on time to synchronization

bm - signal energy required to differentiate between one signal of power S

and (m - i) signals of power (i - a)S with a probability of error

defined by S/N o and a.
A

- fractional loss of power, i.e., _=I0 log a, where _ = power loss in dB

Data S/No,M_in Freq.Offset Req'd Data Req'd AFC Chip Sync Total

Rate for Data Degradation S/N o S/N o Loss Req'd S/N o

_Bits/Sec ) (dB) _dB ) (dB) (dB) (dB) (dB)

0.5 5.1 0.5 5.6 9.7 0.58 10.3

0.6 5.65 0.5 6.15 8.54 0.58 9.12

0.8 6.6 0.5 7.1 6.25 0.58 7.7

1.0 7.3 0.5 7.8 4.8 0.58 8.4

Required (S/N o) for Adequate AFC

Acquisition and Data Detection Characteristics for M = 16

iThis is a reasonable assumption because the time bandwidth products of the

decision variables are several hundred even in the best case.
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a

k - time bandwidth product

T - chip length, seconds

S/N o - signal power to noise density ratio

Several examples are given in Figure 5.4-26 for Pr(E) = 10 -3 . The third

column is obtained by assuming the dedicated use of an SDS 930 which should be

capable of about four spectral analyses every T seconds. A 0.5 dB loss requires

ten spectral analyses so that the basic time is multiplied by three whereas

0.58 dB loss only requires 8 spectral analyses and hence a multiplication of the

basic time by two.

o Signal Power'Required for Various Data Rates Using MFSK - The preceding

discussion has shown that in every case the fast-Fourier-transform receiver is

superior or equal to the autocorrelation receiver. The discussion henceforth

treats only the fast-Fourier-transform receiver.

To determine the total required (S/No) for various data rates, we collect

the cases of the previous sections:



!

!
!

I
I

!
I
!
!

I

I
!

I
!

!
!

R

bps

0.5
0.6
0.8
1.0

S/No
dB

9.7
8.54
7.1
7.8

CHIP SYNC DEGRADATION

0.5 9.7
0.6 8.54
0.8 7.1
1.0 7.8

1.0 7.0

TIME FOR

BASIC SYNC,
tu rain

10.4
11.6
16.4
13.68

7.8
8.6

12.2
10.2

TOTAL TIME, LOSS,
min dB

*_ 31 0.5
~ 34.8 0.5

~; 48 0.5
--,i 41 0.5

15.6 0.58
17.2 0.58
24.4 0:58
20.2 0.58

>6hr 0.1
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If we assume our minimum required data rate to be 0.5 bps, the preceding

results show that if we satisfy the AFC requirements we can increase the data rate

for an increase in power. We can determine an optimum data rate as follows:

First determine S/N o versus data rate required to provide an acceptable probability

of loss of lock (say 10 -3 for the mission). Secondly determine S/N o versus data

rate required to provide an acceptable bit error rate (say 5 x 10-3). Where these

two lines intersect is defined as data rate requiring minimum power to satisfy all

requirements. This is shown to be 0.75 bps in Figure 5.4-27.

5.4.3.4.5 Recommended Receiver Configuration - A detailed comparison matrix is

presented in Figure 5.4-28 for the various receiver configurations described in the

preceding discussion. In Figure 5.4-29, a summary comparison matrix is presented

to highlight our choice.

Two implementations are listed for the first-Fourier spectral analysis

receiver. Configuration A (Design 4) utilizes a special purpose fast Fourier trans-

form "black box" prior to entering the computer. Configuration B (Design 5)

performs the fast Fourier operation within the computer.

The receiver recommended is Configuration B (Design 5). All the components

required are readily available and of moderate cost. This receiver is the most

efficient and versatile of any receiver considered. It is however, a little slower

than Configuration A (Design 4) during initial frequency acquisition. However,

the possible difficulty of obtaining an A/D converter to provide 12-16 bits I

conversion accuracy for analog signals band limted to only 4 kHz (or even 2 kHz)

and the need to develop a fast Fourier transform unit, both required for

Configuration A, lead us to decide in favor of Configuration B.

iReference 5.4-16 shows that 12-16 bits conversion accuracy are required for

Configuration A whereas 5 bits is adequate for Configuration B.
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DETAILED TRADE STUDY - LOW DATA RATE MFSK RECEIVER IMPLEMENTATION

FUNCTIONAL & TECHNICAL

DESIGN REQUIREMENTS

Trades - Detail

1.0 Versatility

1.1 Spectral filter shaping

1.2 Sync tone, periodic or
continuous

1.3 Separate acquisition

circuit required

1.4 Fine freq. information
for AFC

1.5 Variability of tone spacings

1 L I::.... £ £:h--..,I .... :__

2.0 AFC Operation

2.1 Discriminator versatility

2.2 Loop Filter Implementation

3.0 Initial Acquisition

3.1 Amount of parallel process-

ing

3.2 Ease of implementing
multilevel searches

4.0 Degradations

4.1 Signal loss clue freq. offset

4.2 Receiver VCO Instabilities

4.3 Sampling

4.4 Quantization

1. Data

2. Parameters

3. Operations

4.5 Chip

Synchronization without

clock timing

4.6 A/D Converter

1.0 ANALOG COMB FILTER 2.0 DIGITAL COMB FILTER

RECEIVER

- Difficult

RECEIVER

- Easier

MATI

3.0 SPE

AUI

REC

- DifficL

- Impossible - Easy - Easy

- Yes - Yes - No (so

- None - No - No

- Very difficult - Easy - DifficL

I'_ :_: -.. h. I: .... I_e_ cv

- Negligible - Minimal

- Difficult - Easy

- Virtually none - Easier than in 1 to get more

- Very difficult - Difficult

9 9

- Can lead to even more - No VCO

degradation

- Not applicable (N.A.) - Possibly large due to high rate

- N.A.

- Very difficult

1. High

2. High

3. Very high

- Slow (No parallel processing)

- N.A.

• PARTB

- N.A.

REPORT F694 • VOLUME Ill

- Minim

- Easy

- Moderc

- Moder(

- Higher

- No VC

- PossiE

1 • LOW

2. Mode,

3. Model

- Moder

speed:

- Least

Figure 5.4-28
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:TRAL ANALYSIS

{:)CORRELATION

EIVER

_IX OF DESIGN APPROACHES

4.0 SPECTRAL ANALYSIS FAST

FOURIER RCVR

CONFIGURATION A

_tware only)

'rtely difficult

than 4 or 5

ly large due to high rate

ate

ate _

te (Depends on exact

)

stringent

- Very easy

- Easy

- No (software only)

- Yes

- Very easy (to 1/T Hz)

- Easy

- Good

- Easy

- Most

- Easy

- Least

- No VCO

|

5.0 SPECTRAL ANALYSIS FAST

FOURIER RCVR

CONFIGURATION B

- Very easy

SELECTION

(5-4) - 2-3-1

- Easy (2,3,4,5) - 1

- No (software only) (3,4,5) - (2,1)

- Yes (4,5) -2-3-1

- Very easy (to 1/T Hz) (4,5) - 2-3-1

--Easv (9 ._ 4 __ - 1

- Good (415) - (2,5) - 1

- Easy (2,3,4,5) - 1

- Considerable 4-5-3-2-1

- Easy (4,5) - 3-2-1

- Least (4,5) -3

- No VCO Only analog system

has degradation
due to VCO

- Lowest- Possibly large due to high rate

1. Very high

2. Very high

3. Very high

- Fastest

- Most stringent

1. High

2. Very high

3. Very high

- Fast

- Stringent
I

5 - (2,3,4) Total

degradation is

assumed negligible

in worst case

3-2-5-4

4- (5,3) - 2-1
(Placement of 3

questionable)

3-5-4
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SUMMARY TRADE STUDY - LOW DATA RATE MFSK RECEIVER IMPLEMENTATION

FUNCTIONAL & TECHNICAL

DESIGN REQUI REMENTS

, , ,.,

Demodulates M tones for data

rates from0.5 to 1.0bps. Per-

forms initial frequency ac-

quisition and chip sync &

tracks a drifting signal using
an AFC.

Trades-General

1.0 Versatility

2.0 AFC Operation

3.0 Initial Acquisition

4.0 Degradations

1.0 ANALOG COMB

FILTER RECEIVER

Uses M analog tone filters,

squares output, integrates

samples & dumps. Compares

to find largest of M. AFC

from two stagger-tuned filters.

- Least

- Filters are unstable &

difficult to shape

- Continuous sync tone only

- Difficult to change M

- Separate special circuit

- Continuous sync tone only

- Slow

- Must sweep filters & note

max. (difficult)
- Need more filters for reason-

able acquisition time

- Large due to filters instabilities

& poor AFC operation

- No detailed power losses

2.0 DIGITAL COM

FILTER RECEIVER

Same as 1.0 but entirely digital.

- Moderate

- Continuous or periodic

sync tone

- Spectral shaping difficult

- Difficult to change M

- Uses only two spectral

measurements for freq.
estimate

- Periodic or continuous

sync tone
- Cannot be decision-directed

without large increase in

complexity

- Slow

- Even more difficult to sweep
than No. 1

- Need more filters

- Moderate

- Moderately sensitive to freq.
offset.

- No detailed power losses

5.0 Signal Power Require- - High clue to known instabilities - Reasoncible

ments

6.0 Complexity - Very

-Special analog control for

filters

- Special acquisition circuit

Hi |l •

- Very (Simpler than 1)

- Special purpose implementation
of filters and AFC

i

MATRI)

3.0 SPECTRAL

AUTOCORR

RECEIVER

Performs digital

by finding trunc,

tion & inverting

criminator. Initi,

overlapping spe

- Moderate

- Spectral shal:

- Same commel'

- Moderate

- Spectral det
- Two level st

when freq.

- Moderately
- Sensitive to

- Least sensi

- Moderately I

sensitivit_

- Moderate i

Special pur_

(Commerc_

- General pur I
Special pur_

AFC

Figure 5.4-29

5.4-55- I
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OFDESIGNAPPROACHES
ANALYSIS
ELATION

spectral analysis
ted autocorrela-

digital filter dis-

I acquisition by
tra.

ng difficult

tts as 2.0

li difficult toobtain

arches difficult

Jrifting

i lrge
:req. offset

ve to quantization

igh due to AFC

4.0 SPECTRAL ANALYSIS

FAST FOURIER RCVR

CONF IGURATION A

,se Autocorrelator

Ily available)

_se computer
pse digital filter

Performs digital spectral analysis

by fast fourier trans. AFC uses

spectral measurements for dis-

criminator. Initial acquisition

by overlapping spectra.

Uses special-purpose Fast

fourier transform black box on

on 2KHz freq. BW.

- Good

- Uses detailed spectral
information

- Can be decision-directed

- Continuous or periodic

sync tone

- Very fast (2KHz BW)

- Multilevel searches easy

- Spectral detail easy

- Least

- Only due to freq. offset

5.0 SPECTRAL ANALYSIS

FAST FOURIER RCVR

CONFIGURATION B

As in4.0, but uses general purpose

computer for fast fourier transform

signal is mixed with an AFC con-

trolled NCO and filtered to 200hz
BW.

- Good

- Same comments as 4.0

- Fast (200 Hz BW)

- Multilevel searches easy

- Spectral detail easy

- Least

- Only dueto freq. offset

SELECTION

No. 5

(4,5) - 3-2-1

(4,5) - (2-3) - 1

4-5-3-2-1

- Least

- Moderate

- Special purpose Fast Fourier

Transform

- Small general purpose computer

- Very good A/D converter

- Least

-- Least

- General purpose computer

- NCO and L.O. for input mixing

- 200 Hz analog filter(sample)

(4,5) - 2-3-1

(5,4) - 2-3-1

5-4-3-2-1
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5.4.4 Backup Links - A backup mode for the high data rate link is an alternate

mode of operation which transmits all or a portion of the high rate link infor-

mation (3 x 107 bits per day) should the high rate link fail. A backup mode of

operation is desirable if the cost (in pounds, watts, complexity etc.) is not too

great. It is the purpose of this section to describe possible modifications or

additions to the baseline system for the purpose of providing a backup link.

5.4.4.1 Study Approach - To compare the capabilities of the various backup

approaches, four data requirement groupings were postulated as shown in Figures

5.4-30, -31, and -32. These groupings represent Low Rate Science (LRS) 12,000

bits; Engineering Data (ED), 65 K bits; Intermediate Rate Science (IRS), 416 K

bits; and High Rate Science (HRS), 600 K bits, samples of experimental data strlctly

to demonstrate what might be returned by a specific daily data rate.

The five candidate backup approaches described in Paragraph 5.4.4.4 fall into

two categories - those which will backup only the low rate and high rate science

and those which will backup low rate and high rate science and TV data. The

first category includes two S-band direct links, and the second includes three

UHF relay links. Since a comparison of the two categories is desirable, the same

design requirements are considered for comparison of links in the same category.

5.4.4.2 Summary - These comparisons show the UHF relay-2 and S-band Direct-2 are

preferred. The UHF link is preferred because all data including TV is backed up

for only a small increase in weight on the SL and FSC (See Figure 5.4-33). The

S-band link is preferred because all the low rate and all the high rate science

data is backed up (See Figure 5.4-34). Note that the MFSK low rate link used in

the preferred design is incapable of providing backup for any data grouping

besides the LRS.

5.4.4.3 System Constraints - The constraints assumed for each type of system

are listed below:

I
I

I
I

I

I

S-Band: o Maximum power output = 50 watt TWT

o Antenna gain (additional antenna) _ 6 dB

o Automatic turn-on of backup mode

UHF Relay: Assumea orbit 1,000 x 20,000 kilometers (altitude)

o Maximum power output = 40 watts solid state

o Antenna gain (additional antenna) = 5 db (2 dB minimum)

o Transmission distance = 20,000 km

o _o not use CB or ESP transmitter, automatic turn-on of

backup mode
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LOW RATE SCIENCE

TOTAL DATA

BITS

1. Turn on and minimum checkout and verification 13 bits/instrument x 14 instruments . .. 182

2. Minimum operation of each instrument

Atmosphere Measurement every 6 hours (6 meas)
Pressure: 7 bits/meas x 6 meas .................................. 42

Temperature: 7 b its/meas x 6 meas ................................. 42

Wind Velocity: 3 vel x 8 bit/vel x 6 meas .............................. 144

Humidity: 7 bit/meas x 6 meas .................................. 42

Range: 1 bit/meas x 6 meas .................................. 6

Subsurface Probe Measurements every 6 hours (6 meas)

Temperature: 9 temps/meas x 7 bits/temp x 6 meas ....................... 378
Ref Jet Temp: 7 bits/meas x 6 meas ................................ 42

Moisture: 5 moisture/meas x 7 bits/temp moist, x 6 meas ................. 210

Range: 5 bits/meas x 6 meas .................................. 30

Image System Checkout
100 elements x 6 bits/element ...................................... 600

Three Life Detectors

1) Growth

3 chambers x 95 bit/3 chambers x 3 subframes/meas x 5 meas .............. 1425

2) Metabolism
8 chambers x 3 meas/chamber x 46 bits/meas ........................ 1104

4 In situ Metabolism detectors

4 detectors x 3 meas/detector x 24 bits/meas ....................... 288

3) Third Life detector

3 measurements x 300 bits/meas ................................... 900

Gas Chromatograph - 1 spectrum (50% resolution) ......................... 2500
Columntemp: 8bits/measx 10meas ................................. 80

Oven temp: 1 meas/spectrum x 8 bits/meas ........................... 8

Alpha Spectrometer 1 spectrum (a & p) (5i770resolution) ..................... 2048

1 Head Temp x 6 bits/meas x 4 meas ........................ 24
1 Electronic Temp. x 6 bits/meas x 4 meas .................... 24

2 Voltages: 12 bits/meas x 4 meas 48

Spectro-Radiometer 1 spectrum ..................................... 2000

12,167

The total data of 12,167 bits require a transmission rate " 12,167 - 0.7 bits/see for a 6
or: 3600 x 6 x 0.8

transmission time and 80% format

efficiency.

hr
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INTERMEDIATE RATE SCIENCE

i i

Turn-on checkout and verification

39 bits/instrument x 14 instruments

Science Data

Atmospheric Data
Pressure

Temperature

Wind

(Sunrise &
Sunset)

Humidity

Subsurface Probe

Temperature
(Sunrise &

Sunset)

Moisture

(Sunrise &

Sunset)

7 bits/meas x 4 meas/hr x 26 hr

7 bits/meas x 60 meas/hr x 4 hrs (sunrise and sunset)

2 sensors x 7 bits/meas x 4 meas/hr x 26 hrs

2 sensors x 7 bits/meas x 60 meas/hr x 4 hrs (sunrise and sunset)

6 sensors x 8 bits/sensor x 6 (1 meas./10 sec for 1 min) x 4(1 min

operation/15 min) x 26 hr
6 sensors x 8 bits/sensor x 60 meas/hr(wind vel every min)x4hr

2 sensors x 7 bits/meas x 4 meas/hr x 26 hr

2 sensor x 7 bits/meas x 60 meas/hr x 4 hr (sunri!se and sunset)

10 sensors x 7 bits/sensor x 4 meas/hr x 26 hrs

10 sensors x 7 bits/sensor x 60 meas/hr x 4 hrs

5 sensors x 7 bits/sensor x 4 meas/hr x 26 hr

5 sensors x 7 bits/sensor x 60 meas/hr x 4 hr

Range 5 bits/measurement x 344 measurements
Penetrati on Deceleration

7 bits/0.01 sec x 2 sec

Three Life Detectors

1) Growth
5 chambers x 20 bits/chamber/meas x 12 meas/hr x 27 hr

temperatures, amplifiers mode and frame sync pulse monitoring
2) Metabolism

32 chambers x 1 meas/32 min x 12 hr x 60 minx 38 bits/meas

1 temp/15 min. x 12 hr x 60 min/hr x 8 bits/temp
(38 bits/meas - 11 bits /_ count, 11 bits prev. /3 count, pH 8 bits, ,:let head ident.

4 bits, 1 bit test/control count > 2, 1 bit anti met. status, 1 bit ilium cham 1-14,
1 bit ilium cham 15.)

In situ Metabolism

4 in situ capsules x 24 bits/meas x 4 meas/hr x 5 hr

(24bits/meas= 11 bits/3 count, 2bits in situ capsule identification, 1bit for test/
control chamber count> 1. 1bit for test/control chamber >2, 1 bit for anti metabo-

lism control status).

3) Third Life Detector (not yet defined)

Gas Chromatograph

26 spectra x 5000 bits/spectrum

(26 spectra = 8 soil samples x 2 pyro temp. + 4 reference samples ÷ 6 subsur-

face gas samples)

17 spectra x 1100 bits/spectrum

(17 spectra = 7 surf. atm + 8 subsurf, gas + 2 reference)

Oven Temp. 8 bits/meas x 3 meas/spect, x 16 spectra

Column Temp. 8 bits/meas x 1 meas/spect x 12 spectra

Alpha Spectrometer
6 a spectra x 256 channels/spectrum x 8 bits total count/channel

6 p spectra x 256 channels/spectrum x 8 bits total count/channel

4 temperatures (2 head + 2 elect) x 6 bits/temp x 1 meas/hr x 30 hr

4 voltages x 6 bits/voltage x 1 meas/hr x 30 hr
detector data rate: 10 detectors x 6 bits/detector x 1 meas/2 hr x 30 hr

10 switch position x 1 bit/position x 1 sample/hr x 30 hr

Spectro- Radio meter

20 spectra x 2000 bits/spectrum
5 IR-vis detectors x 4 meas/hr x 12 hrs (daylight) x 8 bits/meas

3 UV detectors x 4 meas/hr x 12 hrs (daylight) x 8 bits/meas

Voltage 8 bit/meas x 1 meas/hr x 30 hrs x 1 sensor

Temperature 8 bit/meas x 1 meas/hr x 30 hr x 1 sensor

Sample Processor Soil Data

density 3 samples x 7 bits/sample
Tatal non-imaging data

Imaging data

2 images x 200 elements x 200 lines x 6 bits/element

The total data of 896,035 bits requires a rate of

896,035

3600x6x0.8

Total data

= 52 bits/sec for a 6 hour transmission and 80% format efficiency

i

TOTAL

DATA BITS

546

728

1680

1456

3360

29,952

11,520

1456

3360

7280

16800

3640

8400

1720

1400

32,400

9,840

27,360
384

1920

30,000

130,000

18,700

384

960

12,288

12,288
720

720

900

3O0

40,000
1920

1152

240

24O

21

416,035

480,000

896,035
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ENGINEERING DATA, HIGH RATE SCIENCE AND
COMPRESSED HIGH RATE SCIENCE

Engineering Data
(Low Rate Science)
Atmospheric Pressure
Atmospheric Temperature
Atmospheric Humidity
WindVelocity
SubsurfaceTemperature
SubsurfaceHumidity
Spectroradiometer
Wolf Trap
a Spectrometer
Gas Chromatograph
Gulliver IV
Gulliver III
Optical Rotation
Ultraviolet Spectroradiometer
Sample Acquisition
Surface Acce lerometer

Total s

COMPRESSION
FACTOR

64,700

108,100

13,900
28,000
48,000
43,008

256,000
1,920

27,360
25

1,440
2,520

800

595,700

1.0

1.87

15.85
5.0

26.2
2.67
2.0
9.27

45.6
1.0
5.0O
1.0
1.0

COMPRESSED

64,700

57,600

88O
5,600
1,830

16,100
128,000

207
600
25

288
2,520

800

279,150

Total bits fromeach experiment for 28 hour mission.

Assume Morning landing Case "B" (i.e. April 6, 1974 Arrive at 40°S Latitude, 30° from Terminator).

Assume first-order interpolator.
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TRADE SUMMARY - RELAY LINKS

FUNCTIONAL & TECHNICAL

DESIGN REQUIREMENTS

Back-up transmission

of low rate science, high
rate science and TV data

over relay link.

Trade Consideration

Capability in terms of

mission requirements

Weight added to SL

Weight added to SC

Reliability

Acquisition
Procedure

Two-Way Doppler

Capability

Additional system

complexity

MATRIX OF DESIGN APPROACH

NO. 1

FSK

10W, 2 dB (min)
500 bps
3 hr

All data excluding
part of the TV
(5.4 x 106 bits)

Least

Least

Most reliable

None required

None

No

|111

NO. 2
I

FSK

40W, 2 dB (rain)

3 Kbps

3 hr

All data

(32 x 106 bits)

Middle 1/2 Ib
heavier than No.

1

Least

Most reliabJe

None required

None

No

NO. 3
I

PSK/PM

40W, 2 dB (min)

5.3 Kbps
3 hr

All data

(32 x 106 bits)

Greatest

SELECTION

SE LECT ION

SELECTED

APPROACH

NO. 2

2 or 3-1

1-2-3

Greatest 2 or 1-3

Least reliable 2 or 1-3

Sweep receiver 2 or 1-3

2-3 or 1Possible but

adds additional

complexity

Yes 2 or 1-3

REPORT F694 • VOLUME III • PART B • 31 AUGUST 1967

MCDONNELL A._TRONAUTICS

Figure 5.4-33

5.4-60



I

I

I

I

I
FUNCTIONAL AND TECHNICAL DESIGN REQUIREMENTS
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FUNCTIONAL AND

TECHNICAL

DESIGN REQUIREMENTS

Back-up transmission of low

rate and high rate science
over direct S-Band link.

Trade Consideration

Capability in terms of mission

requirements

MATRIX OF DESIGN APPROACHES.

NO. 1

MFSK with data compression

50W, 0 dB

10 bps
7 hr

Low rate science and high
rate science minus 28K

bits (compressed)

(252K bits)

NO. 2

Coded PSK/PM

50W, 6 dB

35 bps (2BLo=5Hz)
4.5 hr

Low rate science and

high rate science

(570K bits)

SELECTION

Selected Approach

No. 2

2-1

Weight added to St_ Same Same 1 or 2

Weight added to FSC None None 1 or 2

Reliability Most Reliable Least Reliable 1 - 2

Acquisition Procedure Ground sweep Ground sweep 1 or 2

Two-way Doppler No Yes 2 - 1
Capability

Additional System Yes No 2 - 1
Complexity

I

I

I

I

I
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5.4.4.4 Design Approaches and Significant Characteristics - The five backup

modes considered are summarized below:

o S-Band Direct-i An MFSK link with a 50 watt power output TWT and the

existing 0 dB antenna will support i0 bps hut requires automatic switching

of a 50 watt TWT into the existing system, an additional bit stream from

the SI _elemetry subsystem of 10 bps, and data compression of the high rate

science data.

oS'Band Direct-2 A coded PSK/PM link with a 50 watt power output TWT and a

6 dB transmitting antenna gain will support 35 bps for a DSIF receiver

noise bandwidth of 5 Hz (2BLo = 5 Hz), hut requires automatic switching of

the existing system to a 50 watt TWT and an additional bit stream from

the SL telemetry subsystem of 35 bps.

o UHF Relay-i An FSK link with 10 watt power output and 2 dBtransmitting

antenna gain will support 500 bps when the existing Capsule Bus SC mounted

radio is used. However, provision must be made to detect and synchronize

a second 500 bps bit stream, to turn-on the tape recorder in the SC mounted

storage subsystem upon establishment of bit sync., and to obtain the 500 bps

bit stream from the SL TM.

o UHF Relay-2 An FSK llnk with a 40 watt power output and 2 dB transmitting

antenna gain will support 3 kbps, using the Capsule Bus SC mounted radio

Provision must again be made for automatic turn-on of the tape recorder and

for obtaining a 3 kbps hit stream from the SL TM.

o UHF Relay-3 A PSK/PM link with 40 watt power output and 2 dB transmitting

antenna gain will support 5.3 kbps , but requires a phase lack loop receiver

and automatic turn-on of the tape recorder.

The dc power supply and data stream will be automatically decoupled from the

system when a failure occurs in the high rate llnk. If a direct S-band backup

approach is selected, the sensing of a failure will automatically switch the dc

power and bit stream to the backup mode, thus initiating transmission.

If a relay approach is selected, the transmitting and receiving antenna patterns

must overlap before data transmission begins. This will occur whenever a CW trans-

mission from the FSC is detected by the existing relay antenna system on the SL. A

1 watt UHF transmitter (360 MHz) with an integration time of 5 seconds at the

receiver will be sufficient for this task. The CW signal will also be used to end

transmission by requiring that transmission ceases if the signal is lost.
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5.4.4.5 Comparison of Design Approach - Figures 5.4-35 and -36 present a summary

of the comparisons between members of the direct and relay approach categories,

respectively. Some of the entries in these figures are explained in the following

paragraphs.

o Weight Added to SL - The approximate increase in weight for each direct

S-band backup link is listed below (neglecting added antenna weight).

Direct Weight of TWT Weight of RF

Backup Link (ibs) Switches (ibs)

Total

Added Weight(ibs)

1 23 1.0 24

2 23 0.5 23.5

No additional battery weight was added because the total energy required for each

backup system is approximately equal to the energy requizoed for the preferred

system. As shown below, the total preferred system energy requirement is 1190

watt-hours (770 + 420).

DC Power Required

System (watts)

Preferred High Rate Link

Preferred Low Rate Link

Direct Backup i (50W)

Direct Backup 2 (50W)

Transmission Time Total Energy Required

(hours) (watt-hours

(2_W)llO 7.0 770

(lOW) 60 7.0 420

165 7.0 ll50

165 4.5 740

Each of the three UHF Relay links requires a UHF transmitter to be added to SL.

However, because UHF transmission is more efficient than S-band, the UHF link re-

quires less dc power than is already available for the high data rate link, as is

illustrated below:

Required Transmission Required Total

Backup Relay Link DC Power (watts) Time (Hrs) Energy (watt-hrs)

1 36 3.0 108

2 115 3.0 345

3 115 3.0 345

Neglecting added antenna weight, the approximate increase in weight for each

backup link is listed as follows:
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COMPARISON OF RELAY BACK UP LINKS

System Parameters

UHF RELAY-I

Transmission Time

FSK
10W, 2 dB

500 bps

3 Hours

Total Bits 5.4 x 106

Capability in Terms of High rate science,

Mission Requirements low rate science,
and some TV data

Weight Added to SL 5.9 Ib

Weight Added to SC 3.0 Ib

Reliability 0.9949

Acquis ition Procedure

Two-way Doppler

Capability

Addition

System Complexity

None Req'd
B =, 7Khz

None

No

UHF RELAY
-2i. FSK

40W, 2 dB

._r_ops

3 Hours

UHF RELAY
-3,, PSK/PM

40W, 2dB
1,¢[/i _
or, op-

3Ho_s

REMARKS

Assumed

32 x 106 32 x 106

All Data All Data

Neglects weight of
6.5 Ib 7.5 Ib additional antenna

3.0 Ib 6.0 Ib

0.9949 Least Insufficient Data

None Req'd
B = 7Khz

Sweep
Receiver

Possible but

Adds Com-

plex ity

Yes, PLL
Receiver in

SC

None

No

I

I

I

I
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Backup Relay Link

Weight of Total Weight

Transmitter Receiver Weight Added to SLS

(ibs) (ibs) (ibs)

1 4.4 1.5 5.9

2 5.0 1.5 6.5

3 6.0 1.5 7.5

Weight Added to Spacecraft - No additional requirements are placed on the

spacecraft if a direct to Earth S-band system is utilized. Relay i and 2

use the existing SC Capsule Bus radio receiver. Relay 3, however, re-

quires the addition of a phase lock loop receiver to the SC radio sub-

system. All systems require that a i watt CW transmitter be added to the

spacecraft radio sybsystem to achieve automatic turn on. Provision for

and for automatic turn-on of the tape recorder upon establishment of bit

sync accounts for the assignment of added weight on the FSC shown below.

Total Weight Added to SC Radio SS

Relay Backup Link (ibs)

l 3.0

2 3.0

3 6.0

o Acquisition Procedure - The direct S-band links require no special

acquisition procedures other than those used for the baseline MFSK and

PSK/PM systems. For the relay links the frequency uncertainty is estimated

to be 4.4 kHz including 400 Hz due to doppler. Relay i and 2 require no

acquisition because the receiver bandwidth (7kHz per channel) is larger

than the total frequency uncertainties. However, Relay Mode 3 requires

that the phase lock loop receiver be swept over the total frequency un-

certainty.

o Two-Way Doppler Capability - Two way doppler tracking would be possible

only if the S-band system 2 is used. It is not possible with S-band I or

with Relay-i or -2 since they are noncoherent links, making two-way doppler

impossible. Relay-3 could be a coherent link if a phase lock loop receiver

is also used for the SL. However, to obtain two-way de_pler tracking to

Earth the UHF VCO would be required to drive the S-band VCO of the FSC. This
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method would be very complex and not very accurate.

o Additional System Complexity - Only the direct S-band i and the Relay-3

systems require additional system complexity. The former requires data

compression (first-order interpolator) of high rate science data; the

latter requires the 400MHz phase-lock loop receiver.

5.4.4.6 Recommended Design Approach - The results of this analysis show a strong

advantage for the use of UHF Relay 2 link as a backup mode to the high data rate

link. However, use of a relay backup mode may not be acceptable because of lack

of flexibility in specifying the spacecraft orbit. In this event, the direct

S-band 2 link would be the recommended backup mode, (assuming a medium gain

antenna is acceptable). This mode, can only backup low rate and high rate

science.

.I __I _ 1J_1_ AFor the longer missions at higher latitudes, the r_±ay ±±u_ may b= .....L=_u_L_--__^_

continuous communications to Earth. In this case, additional modifications to the

communication link hardware will be necessary; for example, orbiter antenna

steering and higher transmitter power may be required.

Further study of the relay link for science data backup is desirable to

determine the influence the required orbits may have on the entire mission.

5.4.5 Command Subsystem - The command subsystem described in Part C, Section

6 of this volume is designed to provide for the Earth control of the Surface Lab-

oratory (SL). The following subsections are a discussion of some of the more

important factors that were considered in establishing this design.

The JPL two channel command detector with PN synchronized PSK/PM was selected

because of its flight proven configuration and its superior operating characteristics

in the threshold region. The command requirements were estimated and compiled to

establish a command word format. The command word is 43 bits long with ii bits

for addressing and 32 bits for data. Analysis of the constraints on the processing

of commands by the command subsystem revealed a need for an error detection and

correction code. A 63, 57 Bose-Chandhuri code was selected.

Command word synchronization was investigated. We concluded that the most

practical method of word synchronization is to transmit the data subcarrier with

all zeros as modulation whenever the sync subcarrler is being transmitted to

acquire lock. This together with a 4 bit command word preamble of all ones will

provide the proper operating performance.

The operating point for the out-of-lock indicator was calculated on the basis
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of message format coding and operating constraints. The out-of-lock indicator bias

should be set such that the probability of an out-of-lock indication occuring dur-

ing any bit interval is less than 9 x-107.

5.4.5.1 Modulation Technique and Detector Configuration - The modulation technique

and data detector recommended for use on the VOYAGER SL command link are those used

on previous Mariner vehicles, the JPL two channel command detector with PN synchron-

ized PSK/PM modulation. The only other system considered was the single channel

system developed for JPL by Philco. This single channel system does not differ

appreciably from the two channel system in complexity, reliability, weight and

power required. However, the two channel system has been flight proven on the

Mariner vehicles. The two channel system operates with carrier power 3 dB above

the sync channel power. In turn, sync channel power is 3 dB above the data power.

Thus, the carrier power is 57% of the total power received. For the single channel

system 75% of the total received power is in the carrier. So, for the same

received power the carrier of the single channel system is approximately 1.2 dB

higher than that of the two channel system.

The analysis of Reference 5.4-17 describes the major disadvantage of the

single channel system. Strong spectral components at the subcarrier frequency due

to input noise are generated at the input to the loop phase detector. These compo-

nents severly degrade the operation of the loop at operating threshold signal-to-

noise conditions.

However, our feeling is that the single channel system holds promise of

improved efficiency when a delay lock loop is employed. Reference 5.4-18 indicates

a theoretical improvement of 3 dB in power requirements. This result was obtained

from a detailed analysis of sync jitter losses, bandpass filter losses, cross-

multiplier degradation, limiter degradation, etc. In addition, the delay lock

loop phase detector error function has a constant, high slope throughout the lock-

up region.

5.4.5.2 Command Word Format - The selection of the command word format is based

upon estimates of user subsystem requirements with an arbitrary growth factor in-

cluded. The first elements of the word are the various addresses. A vehicle

address of three (3) bits is used to identify the decoder within the Flight Capsule

for which the command is destined, since these decoders operate in parallel prior

to separation. The next address is to identify the subsystem for which the command

is destined. Presently, twelve (12) subsystems in the Capsule Bus and Entry Science

Package must be addressed by the Capsule Bus Decoder. Consequently four (4) bits
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have been set aside for subsystem address. One bit is used to distinguish between

a quantitative command and a direct command. The remainder of the word is sized at

32 bits. That is the number of bits required to update the sequencer and timer

memory., and is more than sufficient to satisfy the direct command requirements of

the vehicle.

In summary the command word format is:

o Vehicle address 3 bits

o Decoder address 3 bits

o Subsystem address 4 bits

o Quantitative - Direct address i bits

o Quantitative - Direct data 32 bits

o Total 43 bits

5.4.5.3 Command Word Co4e - The command link is designed to provide a threshold

cessing of commands by the command subsystem resulted in implementation of the

command word code. These constraints are, (1) that the probability of accepting

a command with one or more undetected errors shall be less than 10-5 , and (2) that

the probability of no response to a command due to one or more detected errors

and/or out-of-lock indication shall be less than 10-4 .

Considering first the effects of bit errors, it is apparent that some form of

bit error detection is required in processing commands.

Let,

o P1 = the probability of accepting a command with one or more undetected errors

° P2 = the probability of no response to a command due to one or more detected

errors.

If no bit detection is employed, a command word "n" bits in length will have:

PI = i- (l-Pe)n

where

P = bit error probability = 10-5 .
e

When

1-P e = 1 - n Pe"Pe<< i, ( )n

Therefore

PI = n P = n (10-5).e

So, for a message of any length, some form of bit error detection is required.

Using a single bit parity code a command word "n" bits in length (assuming the
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parity bit is not one of the "n" bits) will have:

n/2 n/2

P1 = (1-Pe) _l(2k) Pe 2k (1-Pe)n-2k + P _"_(2knl)_Pe e

= k=l

2k-l(l_Pe)n-(2k-l)

Then in _ (nl Pe2 2I p 2 n
PI _2/ e + _-/ =_-- (i0-i0)

So for word "lengths up to 450 bits the criteria that P1 < 10 -5 is met, However,

I using a single bit parity code: n] n 2 2
P2 =i- _i + (l-Pe) = i- _- Pe

I P2 = n Pe ( 1 - nPe ) nP e.

2

The criteria for P2 is P2 < (10-4'I
i

I
I
I

I
I

I
I

I
I

-l+nP ,
e

n<10.

Since this is unsatisfactory, a form of error correction must be employed.

One method of error correction requires three transmissions of the command

word. The first two transmissions are stored as received. As the third transmission

is received, it is "majority voted" on a bit-by-blt basis with the first two stored

groups. The probability of a bit error being introduced in the voting process;

(0Pe is approximately Pe2 (l-Pe)

t

Pe = 3P 2 10-10= 3x
e

Then using this method,

_ = 3n and p2 = 0.PI = i - -3 (i0 -I0 n i0_i0

The disadvantage of this method is the transmission time required for each command

word.

Another method of error correction is the use of error correcting codes. If

a single bit error detection and correction code is used,

Then

PI _ (_) Pe 2 (l-Pe)n-2"

2
n

PI = _-- (i0-i0), and P2 = 0

Using this method and employing a 63.57 Bose-Chandhuri code, a 57 bit command word

I
5.4-70

/

J_g REPORT F694,VOLUME III ,PART B , 31AUGUST1967
|m

MCDONNELL ASTRONAUTIC8



II
II

II
II

I

II
I
I

I
II
I
I

II

I
I

II

I
II

can be corrected by transmitting an additional 6 bits for error detection and

correction. This meth6d was chosen because it best meets our understanding of

the reason for the constraint. Namely, reduce as much as practical the time re-

quired to get a correct command word into the command subsystem and acted upon.

5.4.5.4 Command Word Synchronization - A command word "preamble" is required at

the beginning of each command.word. Its function is to synchronize the decoder with

the command word format so that the decoding process will be accurate and complete.

If the Earth is transmitting a signal to lock-up the command detector (PN + 2 is),

and no data subcarrier is being transmitted, the detector will begin to transmit

random "ones" and "zeros" to the decoder after lock-up is achieved since it is mak-

ing decisions on noise. There is a finite probability, P3' that a succession of

random bits will generate the word sync pattern.

where

[" _I . m I t

P3 1 L(I (2;-J ~' _m: _ _ _:_(_)

m = the number of bits in the preamble

and t = the number of bits in the random bit stream.

Also," P2 for the sync word is: l-(l-Pe )m = mP = m(10-5).

P2 < 10_4 , (_ 10_4 eIf, m.10 -5. < and m < i0, then

P3 > t (_)i0

if P3 is arbitrarily set at 10-5, 10-5 >t i:_24x lO3"

then

t < 1.024 x 10 -2.

That is to say, no random bits can be allowed to enter the decoder. Once again error

detection and correction technique can be used to allow random bits to enter the de-

coder for an extended period of time. However, this requires a long preamble extend-

ing the time necessary to transmit a command word. It seems that a more reasonable

solution to the problem is to transmit the data subcarrier with all zeros whenever the

sync subcarrler is being transmitted to acquire lock. The word sync pattern can then

be in consecutive ones.

Then

I (Pe)ml tP3 = i - i - _ t (i0-5) TM and

P2 = 1 - (i -Pe )m = m(10 -5).
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We chose m : 4. So, P2 : 4 x 10-5 which meets the criteria of 10 -4 . And,

P3 = t (10 -20 ) so lock-on can be held indefinitely without concern that word sync

will be generated by a stream of random bits.

5.4.5.5 Out of Lock Indicator - The operating constraint that the probability of

no response to a command due to one or more detected errors and/or an out-of-lock

indication shall be less than 10-4 necessitates the following analysis of the out-

of-lock indicator performance. First, let us define P4 as the probability that an

out-of-lock indication will occur during any bit interval.

Then, the probability of no response to a command due to an out-of-lock

indication, P5 is;

1-(I-P4 )67 _ 67 P4"

P2 for the entire message is

I-(I-P )4 = 4(10-5),

since P2 for the 63 bits after the preamble is 0. P5 and P2 are correlated because

the noise has a con_,on effect on both probabilities. However, for a worst case

analysis they can be considered uncorrelated. Then, the probability of no response

to a command,

P6 = P5 + P2 - P5P2"

67P4 + 4(I0-5 ) - 67P4.(i0-5): 67P4 [!-4(i0-5)]+ 4(i0-5 )P6:

P6 _ 67P4 : 4(10-5)

By constraint, P6 < 10-4 .

Therefore,

67P 4 + 4(10-5)< lO _4, P4 < (0.6) <i0 -4) ,
67

P4 < 9 (10 -7)

So the bias in the lock detector must be set such that P4 < 9 (10 -7 ) at threshold.
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5.4.6 Antenna Subsystem - The SL Antenna Subsystem must become operational as

soon as possible after landing, and support transmission of high rate and low

rate data to Earth, while accepting command transmission from the DSN.

The analyses which follow lead to the selection of a steered high gain

antenna for high rate data transmission, since fixed antennas cannot satisfy the

minimum daily data transmission requirement. Initial hour angle axis alignment of

the high gain antenna will be accomplished by gyrocompassing, which offers rapid

erection time and independence from external aids. Clock tracking is selected for

the primary tracking mode after alignment, while autotracking is chosen as a

pointing refinement to realize maximum antenna gain. Pseudo-conical scan is the

preferred approach for autotracklng, based on the incorporation of the better

features of both conical scan and monopulse in a single channel receiver imple-

mentation. The proven development of the selected parabolic dish with a circularly

polarized feed argues against the smaller planar array, in the choice of high gain

antenna.

The low rate data link and command link will be supported by separate antennas,

which provide RF isolation and avoid a common single point failure. Deployment

of the antennas on a rotating mast will afford sufficient unobstructed field of

view. Pattern coverage and polarization requirements are satislfled by the pre-

ferred Archimedes spiral antennas, which possess bandwidth properties that will

avoid deturning.

5.4.5.1 Fixed Vs. Steered Antennas - An analysis of the SL hlgh-rate communica-

tions requirements was conducted to choose a satisfactory S-band antenna design

from the three candidate approaches. The requirements of interest are:

o The landing site may be any where from +i0 ° to -40 ° latitude, and at any

longitude.

o The landing may occur anytime between 16 January 1974 and 6 April 1974.

o The (3a) landing error shall be considered to be 500 km.

o Communications may take place only when the elevation angle is greater

than 34 ° from true horizontal.

o The minimum data rate is 5 x 106 bits per day for any choice of landing

sites or dates.

The three candidate approaches are fixed (no erection), fixed (erected to

local vertical), and mechanically steered.
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DesiKn Selection - A set of curves which specify the position of the Earth

in the Martian sky for any choice of longitude and latitude may be derived once a

landing date is chosen. (See Section 2.3.) A plot of Elevation Angle vs. Time from

Subearth longitude may be extracted from that set of curves for a given landing

latitude. Such a plot indicates the beamwidths required to transmit for a given

number of hours per day if the antenna is aligned to local vertical. However, the

plot does not account for uncertainties in landing accuracy. This antenna beam-

width-transmission time information may be corrected by modifying the original set

of curves to tolerate a worst case landin K error, a landing error of 500 km directly

east or west, as drawn on Figure 5.4-37 for both extremes in landing date and -40 °

latitude.

From these curves the a_lowable communication time for each beamwidth can be

found for the fixed and steered antennas. (The allowable communication time is the

tiem between the two innner, solid curves on Figure 5.4-37, since they are composed

of leading and trailing edges of curves shifted to account for possible longitude

errors.) Deriving data rates from this information requires the use of equations

given in Reference 5.4-19. Daily data rate/unit power is plotted as a function of

beamwidth for several landing latitudes in Figure 5.4-38, which shows that the

steerable antenna has much greater transmission capability than the erectable

antenna concept at any landing latitude.

The curves on Figure 54.-39 of daily data rate as a function of power for

several landing latitudes again indicate that the steered antenna is the preferred

approach from the standpoint of transmission capability.

There are considerations other than transmission capability in the selection

of a preferred high-rate antenna, however; the additional criteria considered in

the design selection matrix, Figure 5.4-40 are Tolerance of Landin K Data and Lati-

tude, Tolerance of Surface Terrain_ Simplicity and DesiKn Reliability.

Clearly, the steered antenna approach has the best utility value ("I0") in each

criteria in the category of technical feasibility (because it is unaffected by

surface terrain, variation of landing site and landing latitude and because it can

transmit the minimum and design goal data rates with reasonable power expenditures).

Each fixed system is greathy affected by changes in landing site or date, and will

have a value of "2", but only the fixed - no erection concept will not adapt to

terrain. It has a "0" for that criteria while the erectable antenna has a "i0".
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DESIGN MATRIX FOR FIXED vs. STEERED STUDY

_=l _T,_h, CRITERIA

Tolerance of Landing Date
and Latitude

Tolerance of Surface
Terrain

Transmission Capability

Simplicity

Design Reliability

Total Weighted Value

1 FIXED - NO
ERECTION

11"11"11 l ",r'_/ Ju, ,L, I I Ix WEiGHTiNG
I

2.0 x .15 ,, 0.3

0.0 x. 15-0.0

0.0 x .30 -- 0. 0

0.0 x .20 - 0.0

0.0 x .20 = 0.0

0.3

2 FIXED -
ERECTABLE

UTILITY

2.0

10.0

x WEIGHTING

x .15 - 0.3

x. 15 -11.5

x .30 - 0.9

x. 20- 1.2

x .20- ].6

5.5

UTILITY

3 MECHANICALLY
STEERED

x WEIGHTING

10.0

10.0

3.0

6.0

8.0

10.0

5.0

7.0

x. 15-1.5

x .15- 1.5

x .30 - 3.0

x .20- 1.0

x .20- 1.4

8.4
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Both fixed systems require excessive power to transmit even the minimum data rate;

but the erectable antenna could serve as an alternate, low-galn antenna while the

fixed - no erection approach could not satisfy even such limited transmission

goals, to the former will get a value "3" while the latter gets a "0".

The entries for design reliability and simplicity include the impact of antenna

selection on the system as a whole. Therefore the increased transmitter powers

associated with fixed antennas shown in Figure 5.4-39 more than offset the increases

in antenna simplicity and reliability. The resulting entires are shown in Figure

5.4-40.

The total weighted value of the steered antenna indicates that this approach

is the best design for the high-gain S-band antenna. Further study of the design

matrix and of Figure 5.4-38 indicates that the fixed, vertically, oriented antenna

is a competitive approach to the steered antenna for low gain antennas, when the

transmission requirements are not so high as 5 x i0 u bits/day. Should the tech-

nical feasibility criteria cease to be of importance because both design approaches

can transmit equally well, the fixed, vertically-erected antenna is the superior

approach, especially when the landing point latitude chosen is near the subearth

point (-20 ° for 16 January 1974).

Summary - The study of possible antenna approaches to satisfy the communication

requirements of VOYAGER shows that the hlgh-gain, steered antenna is the only

approach which completely satisfies the requirements. Even at a subearth latitude

landing, landing uncertainties cause the fixed, vertlcally-orlented antenna (a

good medium-gain approach) to require excessive power to transmit the minimum data

rate.

5.4.6.2 Antenna Pointin K Techniques - Several pointing techniques are available

which are potentially capable of orienting the high gain antenna and malntain-

ing the beam in a specified position relative to Earth. This section briefly

examines these various techniques and discusses reasons for including a Radio

Frequency (RF) pointing (autotracking) mode of operation within the SL. The

rationale for the selection of pseudo-conical scan as the preferred autotracking

method is also included.

A high gain parabolic antenna directs its radiated energy into a solid cone

centered about the antenna axis. The antenna must be pointed such that the target

(Earth) falls within this cone shortly after landing. This beam�target relation-

ship must be maintained throughout the high rate data transmission periods. For
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this reason, the following requirements are imposed upon the pointing techniques

used:

o The antenna must be erected and pointed toward Earth nominally within 30

minutes after landing.

o Initial alignment of the antenna must not depend on any signal or informa-

tion external to the SI and mast be compeltely automatic.

o The initial alignment must point the antenna with sufficient accuracy to

allow data to be transmitted at 600 bps, a self imposed requirement.

o Means will be provided for refining the antenna pointing so that the maxi-

mum data rate capability is 1200 bps.

o To fulfill the requirements it is imperative that the pointing technique

used make optimum use of available transmitting time.

The fourth requirement noted above, in conjunction with packaging limitations,

imposes restrictions on the antenna size. A data rate of 1500 bps for the particu-

lar bandwidth and transmitter power involved requires a gain of 22.8 dB (i.e., ERP

of 35.8 dBW_. Additional gain must be provided to compensate for feed losses

(1.3 dB) and for the anticipated loss of gain through pointing error. Weight and

stowage restrictions in effect limit the antenna size to 36 inches, which at 55%

efficiency provides a gain of 24.3 db at 2295 GHz. The high data rate capability,

therefore, requires that the antenna pointing loss be no more than 0.2 dB after

position refinement.

The lower data rate goal of 600 bps can be fulfilled with an effective gain of

18 dB or more. Since a 36 inch antenna must be used to satisfy the high data rate

requirement, a loss due to pointing error of 5 dB can be tolerated. For the high

gain antenna whose half-power beamwidth is 5.1 degrees (one-sided) the allowable

pointing errors corresponding to the 0.2 dB and 5.0 dB points are 1.5 and 6.6

degrees, respectively.

Selection of Primary Pointln_ Technique - There is no single device which,

when used as a reference, will itself fulfill all the listed requirements. However,

there are several methods that are useful for performing a particular function and

which, when used with other techniques, satisfy the overall requirement. These

positioning methods are listed below:

o Sun Sensing

o Gyro Compassing

o Clock Tracking
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o RF Tracking

o Real Time Commanding

Described below are the areas in which specific pointing methods are particu-

larly useful; also included are reasons for the selection or rejection of certain

configurations as primary modes of operation. It should he emphasized that re-

jection of a technique as a primary mode does not eliminate its use as a backup

method.

Sun Sensing - Sun sensors can be used as references for positioning the two

lower axes (AZ and EL) which align the HA axis to the Mars spin axis. Another Sun

sensor placed above the HA axis could be used to rotate the antenna about the HA

axis until the beam is pointed toward Earth. If this HA sensor is adjusted so that

the beam is directed two hours ahead of the Sun, normal Earth tracking can be

maintained. The antenna axes are described in Section C i0.

This method of directing the antenna typically has three difficulties associ-

ated with it. First, the initial erection/alignment procedure requires that the

path of the Sun be known precisely, which entails making two measurements, each a

quarter of a day apart. If the SL landed in the afternoon of the first day, the

alignment might not be completed until well into the second day. Secondly, the

Earth trails the Sun by two hours. If the SLS lands in a crater where the ridge is

only 56 degrees from vertical (34 ° from horizontal), at least two hours of operation

are lost each day. Finally, Mars may be plagued with frequent dust storms that are

severe enough to maks the Sun and render Sun sensors useless.

For the above three reasons, Sun sensors are not used in the erection procedure.

Gyro Compassing - Gyros are of no value in determining longiutde position, and

therefore, cannot be used for tracking. Nevertheless, gyros are excellent reference

devices for controlling the erection axes (AZ and EL) as they operate independently

of external sources and rely only upon detecting the rotation of Mars. Gyros are

limited even in this application because of a possible 39 degree tilt of the SL.

This is discussed in Part B, Section 5.3.

In contrast to the six hour erection time required for Sun sensors, gyros can

align the hour angle axis within 20 minutes after the gyros have stabilized. Allow-

ing a stabilization time of eight minutes, the total erection can be accomplished

in less than 30 minutes (the gyro compassing procedure is described in detail in

Part B, Section 5.3.
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Because of its rapid erection time and its independent nature, a gyro compass-

ing system has been included for initial HA alignment in the preferred system

design.

Clock Tracking - Clock tracking is valuable as a tracking technique only when

the axis upon which it operates has been previously aligned to the planet's spin

axis. Then the Earth can be tracked with a single axis (short term) and each clock

pulse can move the antenna a specific interval (which simplifies servo design).

The clock tracking method, once initiated, is independent of sources external to

the SL, but if it is to be effective, the position of the Earth relative to the SL

vertical axis for a given time must be established. Therefore, this method can only

be as accurate as the initial alignment accuracy, or as accurate as any refinement

of position which has been accomplished.

Clock tracking is valuable as a tracking mode because only a simple single

axis movement is necessary.

RF Tracking - RF Tracking (that is, using a beacon signal radiated from the

target as a reference) does not satisfy the requirement that the SLS operate inde-

pendently of the DSIF, but because of its potential accuracy, is invaluable as a

technique for refining the position of the high gain antenna relative to Earth.

Since clock tracking is only as accurate as the initial alignment, which in turn

depends on a combination of gyro compassing and programmed conditioning, auto-

tracking is the only fast, reliable method of obtaining maximum gain from the 36"

antenna. An autotracking accuracy analysis performed in Part B Section 5.3 shows

that beam/target alignment can be accomplished to within 1.0 degree. The only other

methods which approach this accuracy are the Sun sensing method which may not be

too reliable, and real-time commands which are excessively time consuming.

Thus, RF tracking is included in the system for hour axis position refinement,

and is used in conjunction with clock tracking to eliminate the dependence upon

proper DSIF operation.

Real Time Command Pointing - Through real time commands from the DSIF, the
o

antenna can be directed toward any point and subsequent position updating can

accurately align the antenna to Earth. However, not only does this method require

proper operation of the DSIF, but it is also dependent upon the proper functioning

of the Si command system and low rate telemetry system. If this method was the

primary mode, failure anywhere in the link would preclude further operation.
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If direct commands were the sole source of erecting and aligning the antenna,

considerable time and power would be required for searching the sky and finding

Earth. Even if the antenna was aligned in the general vicinity of Earth by other

methods, comanding the antenna to various positions and monitoring the received

signal strength would be a time consuming process (considering the 30 minute round

trip transit time). The transit time and the dependence on other subsystems are

sufficient reasons for not using real time commands as a primary pointing mode.

From the above discussion the reasons for selecting the particular high gain

antenna control system are evident. The primary mode of operation involves the use

of gyro compassing for HA axis alignment, stored information for initial HA posi-

tioning, clock tracking as the primary pointing method, and autotracking for

position refinement. All of these techniques are defined with more detail in

Section B 5.3. The selection criteria for the type of autotracking employed is

summarized below.

Selection of RF Autotrackin_ Method - There are four commonly used methods of

tracking a RF signal, each with its own merits and limitations. These are:

o Con-Scan

o Sequential Loblng

o Monopulse

o Pseudo Con-Scan

This section considers these autotracking methods and examines the relative

merits of each. It is concluded that, for the SL, the pseudo con-scan technique

is the most appropriate approach.

Con-Scan - The con-scan technique involves offsetting the feed from the mech-

anical axis and physically spinning it about this axis. The result is a beam which

scans about the normal RF axis. When this axis is aligned with the source a normal

RF signal is received, but when it is misaligned, the received signal is amplitude

modulated by a frequency equal to the scan rate. By properly detecting this modu-

lation, the pointing error can be resolved into two orthogonal components and used

to drive a servo system.

The major advantage of the con scan system is that only a single channel is

required in the tracking receiver to detect this modulation. The major disadvan-

tages are the continuous mechanical rotation of the feed and the resulting loss in

transit signal due to the mechanical offset. Additionally, the mechanical rotation

increases the weight of the feed and requires continuous power consumption.

Sequential Lobing - This technique uses a four element feed in whi=h each
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element is sequentially sampled. This technique is only applicable to parabolas

since there is a serious loss in gain when arrays are used due to reduced aperture

efficiency. If the signal from each element is equal, then the pointing error is

zero, while unequal signals can be resolved into pointing errors.

With switching diodes, sequential lobing can be accomplished without moving

parts. However, failure of one element results in serious modulation of the trans-

mitted signal. In addition, the tracking receiver will lose lock and must re-

acquire lock each time the missing element is scanned.

Monopulse - Monopulse tracking is a form of instantaneous tracking in which

each lobe is sampled at RF frequencies. This technique uses a comparator network

which adds the signals from the four antenna elements while generating the differences

in signals between the axis of symmetry. As a result, two error channel receivers

are required in addition to the sum channel receiver in order to detaet the signals.

The error channel receivers are not complete receivers because their local oscilla-

tor is replaced by the sum channel voltage controlled oscillator. The major dis-

advantage of this system is that it requires three separate channels, all of which

must maintain a reasonably matched phase response over the full mission. With

present state-of-the-art equipment, this is impossible without including a compli-

cated servo-controlled phase adjustment. Another serious disadvantage is the re-

quirement to pass three RF transmission lines across the pedestal axes. This prob-

lem, when considering the environment, appears to significantly complicate the

design.

Pseudo Con-Scan - This technique incorporates the advantages of both the con-

scan and monopulse systems: a stationary feed and a single channel receiver. This

technique uses a standard monopulse feed, namely, four elements and a comparator

network. The two error signals are amplitude modulated by audio frequency signals

which are shifted 90 ° in phase relative to each other. These are combined with

the sum channel signal through a directional filter. This technique generates a

signal identical to the con-scan system and hence the simple single receiver can be

used. The use of a directional filter allows only the received signals to be

coupled, preventing the transmitted signal from being coupled into the modulator

and partially wasted. The monopulse comparator and modulator are discussed in

detail in Part C Section 5.1 and the Tracking Receiver in Section C 4.3.
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The advantages of pseudo con-scan over standard monopulse are:

o A significant reduction in the total number of modules by the elimination

of the matched difference channels.

o Reduced size and weight. (188 in 3 vs. 439 in 3 and 5.3 ibs vs. 13.5 ibs)

o Reduced power consumption (8 watts vs. i0.i watts)

o Higher predicted reliability.

o Less sensitive to amplitude and phase unbalances in feed network.

o Reduced complexity of the antenna feed connection between the receiver

and the antenna pedestal.

Since the mechanical con-scan and sequential lobing techniques have dis-

advantages as noted above and the pseudo con-scan has advantages over standard

monopulse, the pseudo con-scan method was selected as the preferred design approach.

5.4.6.3 High Gain Antenna Study - The purpose of this section is to determine

the type of high-gain S-band antenna best suited for the SLS application. Two

candidates were considered for this application: a prime-focus-fed parabola and

a planar array. The characteristics of these antennas and justification for the

selection of the parabola as the preferred design concept are stumnarized below.

The criteria upon which the antenna was chosen are as follows: The antenna

must -

O

o

o

o

Have a minimum gain of 24.3 dB

Be suitable for monopulse tracking

Require little or no development work

Be lightweight and compact

Parabolic Antenna - The parabolic antenna has a long history of reliable

performance in both ground and space applications, including the Mariner and Lunar

Orbiter programs. Construction techniques, especially those involving lightweight

materials, are reasonably simple and no problems are expected. Typical construction

involves the use of a lightweight plastic honeycomb that is sandwiched between two

layers of a glass-cloth plastic material. The reflecting surface is coated with a

thin metallic layer. A parabolic antenna so constructed is very lightweight;

main reflector, feed, support legs, and comparator network weigh a total of 6.5 ibs.

The ultimate gain requirement and feed losses require that the antenna have

an effective gain of 24.3 dB, which can be achieved with a 36 inch parabola of

55 percent efficiency. Whereas the diameter is determined by gain requirements,

depth is a function of the feed beamwidth. For a monopulse feed the primary sum

pattern is narrower than for a single element feed and, therefore, the required
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focal length is longer. For this application, the focal length-to-diameter ratio

(f/d) will be normally 0.5, which means that the distance from the reflecting

surface of the main dish to the feed aperture must be at least 18 inches along the

RF axis. When the reflector thickness, feed depth, and comparator/modulator

package size are included, a total antenna depth approaching 26 inches is necessary.

Planar Array - The configuration considered for the SLS application is a

resonant slot array. This device has linear radiating elements placed every

half wavelength along each waveguide section. These slots are on alternating sides

of the wavegulde to eliminate grating lobes. Circular polarization is achieved by

attaching a polarizing grid across the face of the array.

To achieve a gain of 24.3 db, the planar array would have to be nominally

27 inches square (assuming 70 percent efficiency). This is equivalent to a sur-

face area of 729 square inches which, when compared to the parabolic dish projection

..... _ =H_=.= _-_,==, _=uuu== u,= wx,u xuau_u g and cuqu±reu" uLowage area by zo

percent. The total depth of the array is about 6 inches, one quarter of the para-

bolic antenna depth. In addition, the array is flat and lends itself to easy

stowage on top of the SI.

It is also desirable that the weight of the planar array be minimized. To

accomplish this the planar array must be made of either a thin-walled aluminum

structure or a metal-plated plastic material. In either case, fabricating such

an enclosed structure to the tolerances required for efficient operation is

expected to present some difficulties. The task can, however, be accomplished as

was demonstrated by the Surveyor program. The weight of the finished structure

including the comparator and modulator is expected to be approximately the same as

the parabolic dish (6.5 ibs).

Planar arrays have been used in radar systems for the past 20 years, and during

the past eight years have found their place in space applications (the most recent

being the Surveyor program). However, none of this experience is really applicable

tc VOYAGER requirements. In particular, the combination of a waveguide (slot)

planar array, circular polarization and monopulse tracking has not previously been

proven for space applications. The wavegulde planar array developed for the

Surveyor program was circularly polarized but did not include monopulse tracking

capabilities. Even so, this device is still in the developmental stage and would

require additional experimentation before it would be suitable for the VOYAGER

program. The problems associated with dividing the array into four sections,
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feeding each into the comparator, and maintaining proper phase relationships should

be explored prior to its incorporation into the SL system.

Conclusion - From a size and packaging viewpoint the planar array is the most

suitable for the VOYAGER program. However, because of the development required to

produce an operational, monopulse waveguide array with circular polarization, the

parabolic antenna was selected as the preferred design.

5.4.6.4 TrackinR Receiver Studies - A tracking receiver is required in the SL,

operating on the command transmitter signal from the DSN. This receiver is a

required part of the pseudo-conlcal scan antenna tracking system described in

Part B Section 5.4.6.2. Several important factors were analyzed and are summarized

in the following paragraphs. These include: frequency uncertainties prior to

acquisition and bandwidth required, acquisition time as a function of bandwidth

and received signal-to-noise ratio, and antenna scan rate limitations. It is

found that very good performance results from reasonable parameter selections, e.g.

3 1/2 minute search time for a 26 ° x 52 ° area with worst case values for the base-

line antenna and tracking receiver.

Trackin_ Receiver Frequency Acquisition - The initial uncertainties in the

frequency and frequency rate of the DSN signal arriving at the receiver and the

in tracking receiver local oscillator were first examined. The received frequency

uncertainty is larger than the capture range of the phase-locked loop, so a

frequency-swept search mode is used for initial acquisition. Selection of input

sweep rate is dependent on the initial uncertainty, the required search or

acquisition times, and the anticipated signal strength. Either the DSN ground

(command) transmitter is swept or the VCO (voltage controlled oscillator) in the

tracking receiver is swept in a closed-loop acquisition mode.

The Doppler shift at a transmitter frequency of 2.1 GHz was calculated to be

107 kHz maximum due to the relative motion of the two planets centers, and

4.2 kHz maximum due to each planets rotation about its polar axis. Compensation

for these uncertainties by programming the DSN transmitter frequency according to

the ephemeris data is a regular practice. Since these data are so well known,

the programmed tuning of the DSN transmitter can be expected to reduce the

uncertainty to less than one percent of the total, i.e., less than 1 kHz, and

probably less than 0.1%. The second factor, the component of Doppler shift due

to planet rotation, is also compensated by programmed tuning of the DSN transmitter.

However, a residual uncertainty, of _ 2 kHz due primarily to Lander position

uncertainty is assumed.
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Since the tracking receiver is to be phase-locked and operating on the command

signal, it is assumed to be equivalent in design and performance to the phase-locked

command receiver portion of the Mariner 1969 S-band coherent transponder. It has a

maximum uncertainty specified as _ one part in 105. This corresponds to approximately

21 kHz at the command link frequency. The total uncertainty is about _ 23 kHz.

A conservative value of _ 30 kHz was used for analysis.

The tracking receiver must have sufficient bandwidth (IF and PLL) and gain to

track the input rate of change of frequency and its total range, respectively.

However, it has been verified that these requirements are small with respect to

the acquisition considerations. The total maximum computed Doppler rate of 0.13

Hz/Sec. is insignificant. It can be readily tracked with a PLL bandwidth of two

Hz.

If it is assumed that the tracking receiver VCO has a short term instability
.^7

of _ one part in iu (as in the Mariner transponder) represented by a frequency

ramp covering this range in a period of one-second, the corresponding ramp would

be about 200 Hz/Sec. Even this rate is considerably lower than the frequency

sweep rates that will be used during initial acquisition.

An optimum phase-locked loop noise bandwidth exists for frequency acquisition

which is based on minimization of total peak phase error in the loop due to both

thermal noise and frequency search dynamics. This optimization is equivalent to

minimizing the required input carrier level for a given probability of carrier

lock-on by the loop. For closed loop frequency search this optimum bandwidth is

given by,

2B = 5.55 _f
n

where:2B = two-sided equivalent noise bandwidth of the tracking receivern

(sum channel) phase-locked loop, at threshold, and
o

f = total rate of change of input frequency due to both input signal

dynamics and _requency sweep during search.

It has been shown that the input signal dynamics due to Doppler rates are

negligibly small, so that the rate-of-change of input frequency is that due to

frequency sweep during acquisition. This is true whether the ground transmitter is

swept in frequency or the SL tracking receiver VCO is swept. For ramp frequency

search:

f = Af/tf,
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where: Af = the peak-to-peak frequency sweep width (excess of the expected

uncertainty) and

tf = the time required for a single frequency sweep.

It will be assumed here that a probability of loop capture on a single fre-

quency sweep of 99.9% is sufficient for a design threshold. This corresponds to a

received carrier to noise ratio of about 0 = 10.7 dB as determined experimentally

(see Figure 5.4-41). Based on the above and the link calculations of Section 5.4.8

(accounting for differences inbandwidth and receiving antenna gain) the data for

Figure 5.4-41 were obtained.

It is seen that for the baseline SL antenna gain (24.3 dB) the frequency

acquisition times may be made small, with sweep times on the order of a few seconds

or less.

Antenna Scan Rate Limitation - Since the total frequency uncertainty must be

searched each time the antenna beam scans through its own capture beamwidth, the
o

maximum antenna scan rate (A) is given by:

o 0.85 Ghp
A = deg (3)

tf sec

where the numerator is the capture beamwidth, defined as 85% of the half-power beam-

width, ehp , and tf is the scan time. The total time required for the antenna to

scan through a given angular uncertainty A@ is then

tf
Ta = A@

0.85 Ohp sec (4)

This assumes a constant antenna scan rate and a spatial uncertainty, AO, defined as

a rectangular "strip" AO long and 0.85 Ohp high.

In other words,A@ is the angular uncertainty for a single axis search pattern,

but must be adjusted when considering other scan patterns. For example, searching

a rectangular area 52 degrees "long" and 25 degrees high with a 24 dB antenna would

require three sweeps along the 52 degree sector, stepped in height by about 8.8

degrees (the capture beamwidth) with each sweep. Thus the "linear" angular sweep

length AO would be 3 x 52 = 156 degrees.

Assuming the minimum frequency search time is selected, and thus the maximum

permissible "optimum" loop bandwidth, the frequency search time tf may be expressed

as a function of the frequency uncertainty using the data of Figure 5.4-41.
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Further, since a fixed relationship exists between antenna gain and half-power

beamwidth, i.e.,
26_600

G =
0 2 (5)

hp

for an antenna efficiency of 63%, the total acquisition time may be related directly

to frequency uncertainty,A f, angular uncertainty, AS, and antenna gain G. These

relationships are shown in Figure 5.4-42.

It is found that acquisition time decreases with increasing antenna gain by

the three-halves power for singel axis search. For rectangular raster scans, the

parameters, 48, increases with decreasing beamwidth so that total search time de-

creases in direct proportion to increasing antenna gain.

It is seen that for the assumed frequenoy uncertainty of _ 30 kHz, an antenna

gain of 20 dB, and an angular search rangeA@ of 3 x 52 or 156 degrees, the total

search time required is 3 x 68 or 204 seconds, about 3 1/2 minutes. This is

considered to represent the overall worst-case situation as it is for the lowest

antenna gain being considered, with the maximum frequency uncertainty, and

corresponds to the most adverse link budget. The phase-locked receiver bandwidth,

2BLo ' that would be required for this worst condition can be computed from equation

(i), noting that the sweep time for G = 20 dB and Af = _ 30 kHz is about 15 seconds,

which results in 2BLo = 350 Hz.

The curves in Figure 5.4-42 with the peak antenna gain fixed at 26 dB, show

that a marked reduction in minimum permissible search time results relative to the

20 dB antenna. For Af = _ 30 kHz,AG = 156 degrees, the total search time is

T = 24 seconds. In this case, however, the optimum bandwidth is 1350 Hz. As
a

antenna gain goes up, it is clear that the minimum permissible search time may

not be warranted: simple bandwidth conservation should limit the maximum tracking

receiver noise bandwidth to one to two kHz, since total search time on the order

of ten seconds is assumed to be sufficiently small.

The conclusion is that the tracking receiver is permitted to employ threshold

noise bandwidths in excess of 350 Hz, but that bandwidths in excess of one to two

kHz would offer diminishing advantage, independent of the higher antenna gains. This

range of bandwidths can then be considered as a receiver design requirement.

5.4.6.5 Low Gain Antennas - Low gain antennas are required in the SL to radiate

the Low Rate Radio output toward Earth and accept the DSN signals for the Command

Receiver. This section discusses the rationale used in determining the antenna
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system configuration. The selected configuration consists of individual radiators

for each link which are located on a deployable mast.

5.4.6.5.1 Requirements and Constraints - The design requriements and constraints for

the Low Rate Telemetry and the Command Antenna system are identical since these

functions are required primarily during the same portion of mission and since they

are both direct links to Earth. The requirements and constraints of interest are

as follows:

o Provide essentially hemispheric radiation pattern coverage.

o Operate from immediately after landing until the end of the mission during

the periods the Earth is within view of the SL.

o Operate from a non-leveled SL on surface slopes up to 34 degrees with a

possible additional 5 degree slope induced by the crush of the CB impact

attenuation material.

o Provide radio frequency (RF) isolation of the Command Receiver from the

Low Rate transmitter.

o Operate in the event of failure of any SL deployables.

o Provide protection against single point failures in both the Low Data Rate

link and the Command link.

5.4.6.5.2 Design Characteristics - The Co_nand and Low Rate Telemetry functions

are the primary modes of access to the SL systems from Earth. The capability to

provide these functions is therefore desirable over as much of the Earth view period

as possible. The antenna location selection on the SL should therefore provide an

unobstructed view over the complete hemisphere above the lander. This implies that

the viewing obstructions of the SL deployable equipment, such as the High Gain

Antenna and the experiment deployables, be minimized. The large size of the

High Gain antenna parabolic dish and its location near the center of the SL would

present a significant viewing obstruction for the low gain antennas if they were

located on the top surface of the SL. For this reason the low gain antennas have

been located on a laterally deployed mast. The lateral deployment also provides

an unobstructed 360 ° degree view for the High Gain Antenna whereas a vertical deploy-

ment would not. The mast length required to provide a complete hemispheric view

for the low gain antennas is prohibitive, and a compromise on mast length is

necessary. A 66 inch length was selected and, when the mast is deployed from one

corner of the SL, results in only a 20 degree section of the sphere obstructed when

the High Gain antenna is in the worst case position. This length provides an un-

obstructed view for the low gain antennas of 120 degrees solid angle, (_ 60

degrees from Lander vertical).
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5.4.6.5.3 Antenna Deployment - The deployment of the boom can be accomplished by

telescoping or rotating. The deployment mechanism has considerable impact on

the antenna transmission line requirements since the line must survive the deploy-

ment cycle. Telescoping mechanisms require either a flexible cable wound around

the telescoping mast or a spool to feed the cable down the mast during deployment.

Both approaches require the use of flexible cable which can be significantly affected

by the environment. The rotating mast will allow use of semi-rigid cable along the

length of the mast, with a relatively short length of flexible cable around the

rotation point. Semi-rigid cable also provides lower RF losses. These reasons

contributed to the selection of a rotating mechanism.

5.4.6.5.4 Design Alternatives - The Low Rate Radio transmitter and the Command

Receiver frequencies are 2292 Mhz and 2113 MHz respectively. A single radiator of

the frequency independent type (spirals, log periodic, etc.) would provide the

proper radiation pattern coverage over this frequency range when located on a

deployable mast. However, a single radiator requires a diplexer (with its insertion

loss) to separate the combined transmitter and receiver frequencies. The single

radiator also presents a failure mode whereby both the Low Rate link and the

Con_nand link could be lost with a single failure. A two radiator approach eliminates

the requirement for the dlplexer since adequate RF isolationof the Command Receiver

from the Low Rate transmitter can be obtained by physical separation; it also

eliminates the single failure mode described above. Therefore, individual antennas

are used for the Low Rate telemetry and the Command links.

It is desirable to minimize the number of masts required on the SI. The two

antennas are therefore located on a common mast which also has the Remote Detector

of the Spectro- Radiometer and the Atmospheric Package mounted on it. The mast is

stowed on the top surface of the SL opposite the High Gain Antenna. This minimizes

the field-of-vlew obstruction presented by the stowed High Gain antenna in the event

the Low Gain antenna mast does not deploy. In the stowed condition the antennas

are maintained in a position which orients the radiation pattern along an axis

normal to the top surface of the SL. Upon deployment this orientation is main-

tained.

It would be desirable to orient the antennas to the Mars local vertical in

order to minimize the radiation pattern coverage requirements. The worst case

view angles to Earth occur when the 34 degree surface slope is oriented in a

North-South direction and the impact material crush angle is directly additive to

give a 39 degree maximum tilt with the local vertical. For a I0 degree North

5.4-94
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latitude landing and a 16.5 degree South Sub-Earth latitude (4 February 1974), the

worst case view angle is 65.5 degrees from the lander vertical. For a 40 degree

South landing latitude and a 2 degree North Sub-Earth latitude (22 April 1974),

the worst case view angle is 81 degrees. Considering the small probability that

34 degrees slopes do indeed exist on Mars and also that a landing will occur on

such a slope which has an unfavorable azimuth orientation, it is rationalized that

the added complexity of a leveling mechanism is not warranted, and an antenna

pattern which provides at least 0dB gain over the unobstructed 120 degree solid

angle is satisfactory.

5.4.6.5.4 Antenna Selection - Antenna types investigated and tested for applicability

to the VOYAGER mission included crossed dipoles, short helixes, open ended circular

waveguide and flat sprials. All of these present essentially 80 degree 3dB

beamwidth, symmetrical radiation patterns. However th_ _nn]p_ _ _°_,, _o_A
r 9

and could suffer from detuning in the Mars environment. Open ended waveguide

would require more volume than the spiral or helix, with no improvement in perfor-

mance. The cavity backed Archimedes spiral presents a more symmetrical pattern

than the short helix, with a smaller axial ratio for angles off axis.

5.4.6.5.6 Conclusion - Individual low gain transmit and receive antennas provide

excellent RF isolation between signal paths, and eliminate the possibility of a

common electrical failure point. A deployable mast, oriented to point the

antennas along lander vertical, provides sufficient unobstructed field of view.

Cavity backed Archimides spirals provide adequate pattern coverage, circular

polarization, and bandwidth sufficient to avoid the possibility of environmental

detuning. The preferred design for the low gain antennas is therefore, two

cavity backed Archimedes spirals mounted on a deployable mast.
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5.4.7 Radio Subsystem - The Radio Subsystem for the SL consists of the High Rate

Radio transponder, the Low Rate transmitter, and the Tracking Receiver for the

High Gain Antenna. The latter is discussed in Section 5.4.6.4. The High Rate

and Low Rate components are discussed in the following sections.

5.4.7.1 SL HiKh Rate Radio - The SL high rate radio transponder, with a low

gain antenna receives the command signal from the DSlF. Because of the two way

Doppler tracking requirement, the transponder must be completely phase coherent,

this is achieved through the use of a phase-locked transponder. The threshold

sensitivity of the phase coherent transponder is characterized by the automatic

phase control (APC) loop threshold noise bandwidth (2BLo) as well as receiver

noise figure. For the Mariner 69 Flight Spacecraft radio transponder the APC loop

threshold noise bandwidth is 20 Hz and the command carrier sensitivity is -147

dBm with a 9 dB receiver noise figure. For the VOYAGER SL High Rate Radio, however,

the required threshold sensitivity 18 -150 dBm which requires the receiver noise

figure be kept under 6 dB if the APC loop bandwidth is 20 Hz.

The required low noise characteristics can be obtained with any of the following

devices.

a. tunnel diode amplifier (TDA)

b. transistor amplifier

c. low noise traveling wave tube

d. parametric amplifier

e. maser

The last three devices have low efficiency, complex circuitry and low reliability,

leaving the tunnel diode and transistor S -band amplifiers for consideration (See

Figure 5.4-43). Because of the heat sterilization requirement, germanium devices

cannot be used. No data have yet been obtained from a silicon tunnel-diode ampli-

fier but noise is estimated to be greater than 5 dB. Silicon transistor S-band

preamplifiers in the experimental stage have a noise figure of 4 dB at 2.1 GH.

The sterilization restraint, therefore, imposes a state-of-the-art development

in the high rate S-band amplifier, with the silicon-transistor amplifier being the

preferred approach,

An alternative is to reduce the APC loop noise bandwidth. This is also a

development task since it involves major modification of the Mariner 69 Flight

Spacecraft Radio APC loop design including providing a larger capacitor in the loop

filter and a more stable VCO. While this development can be accomplished within

the program schedule, the preferred approach is to reduce the receiver noise figure
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as discussed in the previous paragraph. This approach was chosen because it has

less impact on transponder design, and faster acquisition time, since the 20 Hz

bandwidth is used.

5.4.7.2 SL Low Rate Radio - The most significant considerations in the SL Low

Rate Radio design are the method of MFSK signal generation and the power amplifi-

cation technique.

MFSK Signal Generation - The signals required for the Low Rate Radio are sixteen

keyed tones centered about a nominal carrier frequency of 2292 MHz with a spacing of

6.25 Hz between them. The short term stability for each tone must be less than

+ 0.23 Hz as discussed in Section 5.4.3.4.

The tones are generated at some low frequency and must be either multiplied or

translated to the 2292 MHz carrier frequency. Frequency translation is preferred

to multiplication in order to preserve the stability of the tone spacing and allow

the tones to be generated with grater spacing However, multiplication t two 4__y

used after the power amplifier as discussed in the next section.

The tones may be generated by a frequency synthesizer or a voltage controlled

crystal oscillator (VCXO). A frequency synthesizer has been selected because of

its inherent tone spacing stability.

The total stability requirement at S-band requires that the crystal oscillator

in the frequency translator be enclosed in an oven which regulates the crystal

temperature within 0.01 °C. The oscillator then exhibits a short term stability

I0 -IIof 1 x per one second average and a long term stability of ! 5 x 10-7 per

year.

S-Band Power Amplification - Amplification of S-band frequencies with 5 watts

of power output can be accomplished with a traveling wave tube (TWT), planar triode

cavity amplifier or a solid state device. The solid state device was selected

since it avoids the use of high power supply voltages, is resistant to vibration

and exhibits greater potential reliability. A trade summary which led to the

selection of the transistor amplifier and varactor multiplier for the baseline

is shown in Figure 5.4-44.

The power handling capability of transistors is about 2 watts at 2.0 GHz.

However beyond this frequency the power drops rapidly. The preferredmethod for

achieving a 5 watt MFSK signal at 2.3 GHz is to generate the MFSK frequencies with

one-half the required spacing at 1.15 GHz, then amplify the signal level up to ]0

watts. The I0 watt 1.15 GHz signal will then be multiplied by a varactor doubler

to obtain the 5 watt 2.3 GHz MFSK signal.
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5.4.8 Telecommunication Link Analysis - In the preceding sections we have summarized

the rationale leading to selection of the preferred design. In this section we

will present a summary performance analysis, and show the requirement and capa-

bilities for telemetering data and receiving command instructions. The tele-

communication links have been designed for direct Surface Laboratory (SL) to

Earth communications, and are compatible with the planned DSIF capabilities for 1973.

The anticipated DSIF parameters used in this analysis are summarized in Figure 5.4-45.

5.4.8.1 SLS Telecommunication Link Characteristics - Three links are provided:

a high-rate telemetry link, a command link, and a low-rate link. Thehigh-

rate link is used for primary mission data transmission at a rate of up to 30 x 106

bits per day and, in a degraded mode, at least 5 x 106 bits per day. The command

link is a JPL standard two-channel system, employing PN synchronization on a square

wave subcarrier and transmitting data on a sine wave subcarrier. The backup low-

rate link transmits engineering data at a 0.5 bps data rate.

The high-rate link provides a PSK/PM carrier at a 20 watt output for exciting a

24 dB gain mechanically steered antenna. Convolutional encoding with sequential

decoding increases the link efficiency. The primary data input to this link is

from the data storage subsystem, which permits choice of transmission bit rates

that are not dependent on accumulation rates. Bit rates in the high rate link

are selectable, on command, to be 300, 600, or 1200 bps, depending on the accuracy

with which the antenna is aligned and the amount of data remaining in the storage

subsystem. The transmitter frequency is normally controlled by a precision

crystal oscillator; however, a transponder mode is available to permit coherent,

two-way Doppler tracking when the command receiver is locked-up.

The command link employs a two-channel PSK/PM, coherent phase-lock-loop receiver

with a low-noise preamplifier. The command bit rate has been specified as i bps.

A noncoherent 16-FSK 5-watt S-band transmitter, operating into a low-gain

antenna, provides a backup low-rate link. This link requires a special receiver

at the DSIF stations (See paragraph 5.4.3.4). An additional receiving link is

provided by the tracking receiver, which generates antenna steering error signals

for the Control Subsystem.

The link analyses are based on the 1973 launch and arrival trajectories. The

nominal operating range is 2.5 x 108 km with a maximum of 2.85 x 108 km. The SL

circuit losses are shown in Figure 5.4-46. All three links assume the use of the

210-ft. DSIF antenna, with 45 o K noise temperature and i0 KW command transmitter

power.
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DSIF PARAMETERS

RECE IVE TRANSMIT RE FERENCES

I
I

I

I
I
I
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Ii

Ground Transmitter Power

Present Capability

Planned Capability

(Goldstone Venus Station Now)

Ground Circuit Loss

210-foot Diplexed, Non-Tracking Feed

210-foot Diplexed and Tracking Feed

210-foot Maser

2i0-f oot Paramp

85-foot Diplexed and Tracking Feed

85-foot Maser

85-foot Paramp

Acquisition Antenna

Ground Antenna Gain

210-foot

85-foot

Acqu is ition Antenna

Antenna Pointing Loss

210-foot

85-foot

Polarization Loss

210-foot
85-foot

System Noise Temperature

210-foot Diplexed with Maser (2)

85-foot, Diplexed with Maser (2)

÷0.1 dB
-0.2 -0.0

-u.j __u. I cll_

+0.1 dB
-0-2_0. 0

-0.3 -+0.1 dB

-0.5 -+0.2 dB

61.0-+ 1.0 dB

-+1.0 dB
53.0 -0.5

22 ± 1 dB

-0.1 ± 0.1 dB

+0.0 dB
-0.0 -0.1

0.8 dB Maximum

0.7 dB Maximum

45 ° _+10°K

55° ± 10°K

10 kW ± 0.5 dB

100kW +_0.5dB

-0.4 -+0.1 dB

60.0 ± 0.8 dB

+1.0 dB
51.0 -0.5

19.1 ± 1 dB

-0.1 ! 0.1 dB

+0.0 dB
-0.0 -0.1

EPD 283 Rev. 2

EPD 283 Rev. 2

TM 33-83 R1

EPD 283

EPD 283

EPD 283

EPD 283

EPD 283

EPD 283

MC-4-310A

EPD 283 Rev. 2

EPD 283 Rev. 2

EPD 283 Rev. 2

EPD 283 (1)

EPD 283 (1)

EPD 283 Rev. 2

EPD 283 Rev. 2

EPD 283 Rev. 2

EPD 283 Rev. 2

Notes:

(1) Computed from 0.02-degree angle error.

(2) For 10 kW transmitter power; low-noise reception with high power (100 kW) is still under
development.
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S-BAND SL RADIO SUBSYSTEM

I
IMFSK
ITransmitte, f_ _

5 watts _ _ _ I _ 2292 MHz
I 0.5 bps

I

I ._i_ '_'-'lll' 2295 MH z_ Diplexer

[Track" I! ing

I Receiver

I
I
I

I

tC°mmand Pre"Pr''Receive, J j omplifier selector I _ _- 2113MHz

C = Circulator Switch

CIRCUIT LOSSES - dB

Low Rate Transmitter High Rate Transmitter Low Gain Receive High Gain Receiver

Circulator Switch -0.2 +0.0 -0.2 -0.2 +0.0 -0.2

Diplexer -0.3 +0.1 -0.1 -0.5 +0.1 -0.1

Preselector -0.9 +0.1 -0.1

Cable -0.6 +0.0 -0.2 -0.8 +0.0 -0.2 -0.8 +0.0 -0.2 -0.6 +0.0 -0.2

Total -0.8;+0.0,-0.4 -1.3;+0.1,-0.5 -1.3; +0.1, -0.3 -1.5;+0.1,-0.3

I

I

I
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These analyses are not particularily sensitive to planned landing site latitude

or longitude; however unanticipated deviations in landing site can affect the low-

rate link receiver frequency tracking circuits. An uncertainty of _ 500 km provides

more frequency (uncorrectable Doppler) rate than anticipated from the oscillator short

term stability, and, in fact, specifies the minimum power required to achieve and

maintain frequency-lock in the recei_Ter.

5.4.8.2 HiKh Rate Telemetry Link Analysis - A summary of this link analysis is

presented in Figure 5.4-47. A high-rate-link transmitter power of 20 watts was

considered a conservative maximum power for a sterilizable, high-efficiency TWTA,

and is well below the anticipated breakdown power level at the antenna feed. The

0.6 dB tolerance was chosen rather arbitrarily, and is subject to review during

the development phase.

Figure 5.4-46 presents a summary diagram of the anticipated transmitter circuit

losses. Although the TWTA is remote from the antenna feed, the line losses are

minimized by use of low-loss, solid jacket coaxial cables wherever practical,

particularly through the long section of the high-gain antenna mount. Refer to

Section 5.1, Part C, for a description of the antenna mount and feed. The trans-

mitting antenna gain is a compromise between a maximized transmission rate where

all systems are operating, and mslntenance of usable gain for degraded modes where

pointing errors increase.

In the normal sequence of events, the antenna is erected, and the hour axis

is oriented nearly parallel to the polar axis of Mars. Subsequently, there is a

programmed rotation about the hour and declination axes to point the antenna toward

Earth. If all systems are within normal operational boundaries, the antenna pointing
o

error will be less than 6 (3 o); and if a co_mmnd carrier is present, the tracking

receiver will acquire lock and cause the control system to adjust the antenna hour
o

and declination axes to reduce the error to less than _ 1 . The pointing error

loss for this mode is therefore not more than i.I dB. In any contingency mode

where autotrack is used, the same steering error and pointing error loss is appli-

cable. If the autotrack mode is inhibited, or otherwise not available, the antenna

pointing loss increases to 4.4 dB. Although this is a contingency mode of operation,

the sequencer and timer will normally command the 300 bps data rate, which is

conlnensurate with this mode, until over-ridden by direct command or until a locked-

and-tracking signal is received from the tracking receiver. The intermediate 600 bps
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NO.

1

2

3

4

5

6

7

8

9

10

11

12

i3

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

TELECOMMUNICATION DESIGN CONTROL

CHANNEL: SURFACE LABORATORY - EARTH, HIGH RATE, PSK/PM, TELEMETRY

MODE: SLS; HIGH GAIN, 20W; DSIF: 210 FT, MASER PREAMPLIFIER, CLOCK TRACK

PARAMETER

Total Transmitter Power (20 watts)

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss (2295 MHz, 2.5x 108Km)

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectral Density

(N/B) (T System = 45 +-10 °K)
• LA I I ,' I _~_

_arrlcr _o¢luir.lllQn Lu_

Received Carrier Power

Carrier APC Noise Bandwidth (2BLo = 5 Hz)

CARRIER PERFORMANCE - TRACKING (One-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE - TRACKING (Two-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

DATA CHANNEL

Modulation Loss

Received Data Subcarrier Power

Bit Rate (l/T) 300 bps

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

SYNC CHANNEL

Modulation Loss

Received Sync Subcarrier Power

Sync APC Noise Bandwidth (2BLo = Hz)

Threshold SNR in 2BLo
Threshold Subcarrier Power

Performance Margin

VALUE

42.7 dBm

-1.3dB

24.3 dB

0.0 dB

-267.7 dB

-0.1 dB

61.0 dB

-0.1 dB

TOLERANCE(dB)

+0 6 -0.6

+0.3 -0.3

+0.0 -0. 5

+0.0 -4.4

+0.0 -1.2

+O. 1 -0.4

+1.0 -1.0

+0.1 -0.1

-7.9

-8.5

+0.9 -1,1

+O.8 -0.8

+2.9 -9.3

+O.9 -1.1

+4.0 -10.2

+1.0 -1.0

+ 1.° -2.1

+5.0 -11.2

+0.9 - 1.1

+ 4.0 -10.2

Included in Line 7

- 183.9 dB + 1.5

-141.2 dBm +2.1

-182. 1 dBm/Hz

-7.7 dB

- 148,9 dBm

7.0 dB/Hz

0.0 dB

-175. 1 dBm

26.2 dB

2.0 dB

- 173.1 dBm

24.2 dB

16.0 dB

-159.1 dBm

10.2 dB

+0.2 -0.2

+2.3 -8.7

+0. 1 -0.0

+1.0 -1.1

+3.4 -9.7

-0.8 dB

- 142.0 dBm

24.8 dB/Hz

2.9 dB

-154.4 dBm

12.4 dB
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5.4.8.1

5.4.8. 1

5.4.8. 1

5.4.8.1

Calculated

5.4.8.2

5.4.8

5.4.8

,_, Lines 2 to 9

Lines 1 + 10

5.4.8

Calculated

Lines 11+13

5.4.8.2

Lines 12+15+16

Lines 14-17

Lines 12+15+19

Lines 14-20

5.4.8.2

Lines 12+15+22

_ines 14-23

Calculated

Lines 11+25

5.4.8.2

Lines 12+27+28

Lines 26-29

Figure 5.4-47
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rate is provided upon command if sufficient signal strength is available. The 1200

bps rate is normally used only in autotrack, although command selection is also

possible. Figure 5.4-48 shows a Design Control Table for the 1200 bps autotrack

mode.

The space loss has been calculated for the nominal 1.67 Astronautical Unit

(AU) (2.5 x 108 km) range. A 1.2 dB negative tolerance has been added to account

for the range increase up to 1.90 AU (2.85 x 108 km) at the latest anticipated

landing date. Refer to Volume II, Part B, Section 2.2 for a discussion of traject-

ory and arrival date constraints.

The polarization loss, line 6 of Figure 5.4-47, accounts for an estimated 3

dB axial ratio 6 ° off beam center. The nominal value reflects essentially O

dB axial ratio for the DSIF antenna, while the tolerance allows up to 3 dB axial

ratio.

Use of square wave subcarrier modulation results in a choice o5 modulation

index of 1.15 radians, which yields a 7.7 dB carrier modulation loss. The tolerances

are based on a linear phase modulator and a _ 4% input voltage tolerance. Although

a 5 Hz carrier APC noise bandwidth is assumed for 1973, a possibility exists that a

i Hz bandwidth may become available. For this link, however, reduction of carrier

power below the chosen level would introduce more severe modulation-stability.

requirements and would increase the data channel power very little. The modulation

index has been chosen for the 300 bps data rate and is maintained constant for the

other data rates to minimize complexity.

Selection of a threshold SNR in 2 BLO is complicated because degradation suffered

by a sequential decoder resulting from a noisy phase reference has thus far eluded

complete analysis. Laboratory results based on a simulation by Haccound (See

Reference 5.4-20) have indicated the following:

SNR in 2 BLO

13 dB

16 dB

19 dB

Degradation (without interleaving)

1.0 dB

0.5 dB

0.i dB

We chose the value of 16 dB, and allowed the 0.5 dB degradation margin, even

though interleaving is employed to minimize the probability of decoder hang-up

due to associated bit errors.

The required data threshold is defined as the energy-to-noise spectral density

(ST/N O ) required at the input to the subcarrier demodulator for a specified bit
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TELECOMMUNICATION DESIGN CONTROL

CHANNEL: SURFACE LABORATORY - EARTH HIGH RATE, PSK/PM, TELEMETRY
MODE: SLS, HIGH GAIN 20W; DSIF: 210 FT, MASER PREAMPLIFIER, AUTOTRACK

NO.

1

2

3

4

5

6

7

8

9

10

11

12

I,.!.?.....
14

15

16

17

18

'19

19

20

21

22

_23
24

25

26

27

28

29

3O

31

32

33

34

35

36

PARAMETER VALUE TOLERANCE (dB) SOURCE

Total Transmitter Power (20 watts)

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss -1.1

Space Loss (2295 MHz, 2.5 x 108 Km)

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss -4.6

Total Received Power -5.2

Receiver Noise Spectral Density
(N/B) (T System = 45 +10 °K)

Carrier Modulation Loss

Received Carrier Power -6.0

Carrier APC Noise Bandwidth (2BLo -- 5 Hz)

CARRIER PERFORMANCE - TRACKING (One-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin -6.9

CARRIER PERFORMANCE - TRACKING (Two-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

-7_.9Performance Margin

CARRIER PERFORMANCE

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin -6.9

DATA CHANNEL

Modulation Loss

Received Data Subcarrie r Power -5.4

Bit Rate (l/T) 1200 bps 30.8 dB-Hz

Required S T/N/B

Threshold Subcarrier Power -148.4 dBm +1.0 -1.1

Performance Margin 6.4 dB +3.4 -6.4

SYNC CHANNEL

Modulation Loss

Received Sync Subcarrier Power

Sync APC Noise BW (2BLo -- Hz)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

COMMENTS:
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error rate. The required data threshold includes losses due to carrier and sub-

carrier demodulators, bit synchronization, imperfect coding, filters, etc. The

various losses are summarized in Figure 5.4-49 and are discussed in Section 5.4.2.

The theoretical data threshold is -1.6 dB.

Due to the high data rates compared to the synchronization channel noise band-

width, no additional power is required for synchronization. Bit synchronization

and subcarrier demodulation can be readily accomplished with either a squaring loop

or the special bit synchronizer developed for the Capsule Bus relay link.

The net data channel performance margin as shown on line 30 of Figure 5.4-47 is

nearly sufficient to permit operation of 600 bps in the clock track mode: hence a

600 bps mode is available on command. The performance margin in the autotrack

mode is less conservative, but adquate.

5.4.8.3 Low Rate Telemetry Link Analysis - A summary of this llnk analysis is

presented in Figure 5.4-50. The transmitter power of 5 watts was chosen to pro-

vide enough power for reception and frequency tracking by the DSIF and also to

enable the use of a solid-state transmitter and low-gain antenna. The + 0.5 dB

tolerance is subject to review during the development phase.

The anticipated transmitter circuit losses are shown in Figure 5.4-46. Separ-

ate low gain antennas are used for the low-rate transmitter and command receiver

to eliminate diplexer losses.

The transmitting antenna provides a gain greater than 0 dB over a 120 ° solid

angle. The i dB negative tolerance is included to provide coverage over a 140 °

solid angle in case ground slopes permit communications up to 70 ° from normal

to the SL.

The space loss has been calculated for the nominal 1.6 AU (2.5 x 108 km)

range. A 1.2 dB negative tolerance has been added to account for arrival at the

latest anticipated landing date when the range is 1.90 AU (2.85 x 108 km).

The nominal value of polarization loss accounts for communications near the

axis of the transmitting antenna and allows for up to 1.5 dB axial ratios for both

transmitting and receiving antennas while the negative tolerance applies at the

edges of the transmitting antenna pattern.

The 16-FSK modulation at a data rate of 0.5 bps allows noncoherent reception.

This precludes the need for power to maintain channel coherence and increases the

efficiency of the link. Sixteen tones were chosen as a compromise between the

higher efficiency of a large number of tones and the difficulties associated with

time synchronization of tones with long duration. The low-rate receiver and the
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TELECOMMUNICATIONDESIGNCONTROL

CHANNEL: SURFACE LABORATORY - EARTH, LOW RATE, MFSK, TELEMETRY

MODE: SLS LOW GAIN, 5W; DSIF: 210 FT., MASER PREAMPLIFIER

NO.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

3O

31

32

33

34

35

36

PARAMETER

Total Transmitter Power (5 watts)

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Loss

Space Loss (2295 MHz, 2.5x 108 kin)

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Tota_ Received Power

Receiver Noise Spectral Density

t_s /r_'_ (T C..°.--- = ,to _- in Ok*",

Carrier Modulation Loss

Received Carrier Power

Carrier AFC Noise BW (2BLo = Hz)

CARRIER PERFORMANCE - TRACKING (One-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE - TRACKING (Two-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

DATA CHANNEL

Modulation Loss

Received Data Subcarrier Power

Bit Rate (1/'1") 0.5 bps

Required ST/N/B (Pe = 5 x 10 -3)

l Threshold Subcarrier Power

Performance Margin

SYNC CHANNEL

Modulation Loss

Received Sync Subcarrier Power

Sync APC Noise BW _BLo Hz)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

VALUE TOLERANCE (dB) SOURCE

36.7 dBm + 0.5 -0.5 5.4.8.1

-0.7 dB + 0.1 -0.1 5.4.8.1

0.0 dB + 1.0 -1.0 5.4.8.1

Included in Line 3

-267.7 dB + 0.0 -1.2 Calculated

-0.1 dB + 0.1 -0.6 5.4.8.4

61.0dB + 1.0 -1.0 5.4.8

-0.1 dB + 0.1 -0.1 5.4.8

-0.1 dB + 0.1 -0.1 5.4.8

-207.7 dB +2.4 -4.1 Z Lines 2 to 9

-171.0 dBm + 2.9 -4.6 Lines 1 ÷ 10

-182.1 dBm/Hz + 0.9 -1.1

+ 2.9 -4.6

+0.5 -0.0

+1.4 -1.1

+4.0 -6.0

-171.0 dBm

-3.0 dB-Hz

8.1 dB

-177.0 dBm

6.0 dB

5.4.8

Line 11

5.4.8.3

5.4.8.3

Lines 12 + 27 + 2_

Lines 26-29
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required value of ST/No are discussedin Section 5.4.3.4.

The low-rate performance margin is greater than or equal to zero, providing

transmission of low-rate data using a 5-watt, solid-state transmitter and low-gain

antenna. Thus a backup link, that does not exhibit the failure modes associated with

a TWTA or a pointed antenna is provided for these data.

5.4.8.4 Command Link - The command link design control table shown in Figure

5.4-51 assumes the transmission parameters shown in Figure 5.4-45 and the receiving

circuit losses of Figure 5.4-46. The receiving antenna is similar to that used for

the low-rate data link.

The receiver system temperature is derived in Figure 5.4-52. The other receiver

parameters are identical to those to be used in the Mariner '69 command receiver.

The modulation losses assume linear phase modulation with a deviation stability

of _ 2.5%. The form of modulation and synchronization is also identical to that used

in the Mariner series in that a pseudo noise (PN) synchronization code is used and

the command bits are modulated on a sinusoidal subcarrier. The only addition to the

command structure is the Bose-Chaudhuri coding and the increased number and length

of commands discussed in Section 5.4.5.

The net margin in the command link is sufficient to insure command capability

throughout the mission.
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TELECOMMUNICATIONS DESIGN CONTROL TABLE

CHANNEL: EARTH - SURFACE LABORATORY, COMMAND
MODE: SLS LOW GAIN, PREAMPLIFIER: DSIF: 210 FT., 10 KW

NO.

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

PARAMETER VALUE TOLERANCE fdB)i SOURCE

Total Transmitter Power (10,000 watts)' + 0.5 -0.5

Transmitting Circuit Loss

Transmitting Antenna Gain

Transmitting Antenna Pointing Los.:

Space Loss (2113MHz, 2.5x 108 kin)

Polarization Loss

Receiving Antenna Gain

Receiving Antenna Pointing Loss

Receiving Circuit Loss

Net Circuit Loss

Total Received Power

Receiver Noise Spectra I Dens ity
(N/B) (T System = 644 ÷ 136 - 55°K)

Received Carrier Power

Carrier APC Noise BW (2BLo = 20 Hz)

CARRIER PERFORMANCE - TRACKING (One-Way)

Threshold SNR in 2Bko

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE - TRACKING (Two-Way)

Threshold SNR in 2BLo

Threshold Carrier Power

Performance Margin

CARRIER PERFORMANCE

Threshold SNR in 2BLo

Threshold Carrier Power

Per formance Margin

DATA CHANNEL

Modulation Loss

Received Data Subcarrier Power

Bit Rate (l/T) 1 bps

Required ST/N/B

Threshold Subcarrier Power

Performance Margin

SYNC CHANNEL

Modulation Loss

Received Sync Subcarrier Power

Sync APC Noise BW (2BLo - 2Hz)

Threshold SNR in 2BLo

Threshold Subcarrier Power

Performance Margin

70.0 dBm

-0.4 dB

60.0 dB

-0.1 dB

-266.9 dB

-0.1 dB

+0.0 dB

Included

-1.3 dB

-208.8 dB

-138.8 dB

-170.5 dBm/Hz

24 Jn

-141.2 dBm

13.0 dB-Hz

3.8 dB

-153.7 dBm

12.5 dB

8.0 dB

-149.5 dBm

8.3 dB

-8.5 dB

-147.3 dBm

0.0 dB-Hz

15.7 dB

-154.8 dBm

7.5 dB

-5.5 dB

-144.3 dBm

+3.0 dB-Hz

+15.7 dB

-151.8 dBm

7.5 dB

+ 0.1 -0.1

+ 0.8 -0.8

+ 0.0 -0.1

+ 0.0 -1.2

+ 0.1 -0.6

+ 1.0 -1.0

in Line 7

+ 0.2 -0.2

+ 2.2 -4.0

÷ 2.7 -4.5

+ 0.8 -0.4

+ 0.3 -0.3

+ 3.0 -4.8

-_ 0.0 -1.0

+1.0 -1.0

+1.8 -2.4

+5.4 -6.6

+1.0 -1.0

+1.8 -1.4

+4.3 -6.5

+1.0 -1.0

+1.8 -1.4

+4.3 -6.6

5.4.8.1

5.4.8.1

5.4.8.1

5.4.8.4

5.4.8.3

5.4.8.3

5.4.8.3

m

5.4.8

Lines 2 to 9

Lines 1 + 10

5.4.8.4

5.4.8.4

Lines 11+13

5.4.8.4

5.4.8.4

Lines 12 + 15 ÷ 19

Lines 14-20

5.4.8.4

iLines 12 + 15 ÷ 22

Lines 14-23

5.4.8.4

Lines 11 + 25

5.4.8

5.4.8.4

Lines 12 + 27 + 2E

Lines 26-29

5.4.8.4

Lines 11+31

5.4.8.4

5.4.8.4

Lines 12 + 33 + 3_

Lines 32-25
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5.4.9 Data Handling System Configuration - Studies of the telemetry and science

data subsystems requirements and the alternate configurations have been performed. We

have studied the entire Data Handling Subsystem (DHS) as a functional entity in order

to conduct these studies. The DHS encompasses the Science Data Subsystem (SDS), the

Telemetry Subsystem (TM), and the Data Storage Subsystem (DSS). In those studies we have

organized the data inputs, control outputs, and the flow paths into and out of the

combined telemetry and science data subsystems. The functional interfaces with the

data storage subsystem and the radio subsystem have been examined.

Based on the results of the functional requirements and external interface

studies, the internal functions are analyzed, and an interface between the telemetry

and science data subsystems is determined. Subsequent investigation was performed

to determine the optimal implementation techniques for each of these subsystems.

From these studies we have evolved a stored program telemetry subsystem which

provides control of the science data subsystem elements, the remote interface units,

and controls the accumulation of data and the functions of the data storage subsys-

tem. The preferred approach implementation is discussed in Section C 7.

5.4.9.1 Summary - Data are accumulated at low rates for most of the mission.

During launch through landing, the SL subsystems are essentially dormant, with

only a brief period of activity during in-flight checkout. A cruise commutator

is provided to monitor the SL subsystems status during the dormant phases, and

operates under the control of the Capsule Bus telemetry subsystem. During in-fllght

checkout and landed operations, the SL telemetry and Science Data subsystems con-

trol the accumulation and transmission of data.

In the landed operation phase, two predominant data accumulation modes are

encountered. Engineering and some of the science data are accumulated on a con-

tinuous periodic basis during the entire landed operation. The atmospheric proper-

ties experiments tend to be continuous in nature, requiring measurements of wind

velocity and atmospheric temperature on a periodic basis, with increased sampling

rates during sunrise and sunset. The other portion of the science data is accumu-

lated in bursts. Panoramic imaging data is a prime example of burst type data,

where a single low resolution image is obtained in four minutes, and consists of

2.16 x 10 6 bits of data.
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A mixture of formats is desirable to cope with the variable nature of the data

accumulation modes. The engineering data are organized in an interlaced tube for-

mat, while the science data are organized in a burst tube format, i.e., the col-

lection of all of the samples in the tubes simultaneously rather than sequentially.

All data to be transmitted on the high rate link should be accumulated in the data

storage subsystem, and transmitted in a "last in - first out" manner. This accumu-

lation of data in the data storage subsystem tape recorder is under the control of

the telemetry subsystem. The imaging data is recorded directly, while all other

data is accumulated in a telemetry buffer prior to recording.

The interface between the telemetry and science data subsystems is defined

herein. The Science Data Subsystem provides the experiments sequencing

instructions, accepts, processes and delivers the resulting data to the telemetry

subsystem. The TM commands experiment measurements and controls data flow

into the buffer accumulator and the data storage subsystem. The _i also

provides the clock and data rate controls to the SDS.

The TM contains an electrically alterable stored program which controls its

functions during the landed operations. The programmer employs a hardwired program

with core-storage for gating, formatting, and experiment measurement control

instructions.

The sDs is composed of nine remote interface units (RIU) physically packaged

together on a common base. There is an RIU for each experiment, and the RIU con-

tains the circuitry to sequence the associated science instrument in response to

a measurement command. Each RIU also ....d.... ns, converts, and processes the

resulting data output as required, and provides multiplexing and output controls.

The RIU output data is distributed either to the telemetry or data storage sub-

system.

5.4.9.2 Requirements - The DHS data requirements are specified by the data instru-

mentation List, Figure 5.4-4, and by the experiment time lines, Figure 5.4-5.

In conjunction with the data collection requirements, the DHS must also be

compatible with the data transmission requirements and constraints specified in

Section 5.4. All of these DHS requirements may be categorized as either data

flow or data control requirements.

5.4-114
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Data Flow Requirements - The data flow requirements have two principal facets:

the data character and the data occurrence variability. Engineering or housekeeping

data is characterized by a modest accuracy requirement and a ready availability for

transmission. Scientific data on the other hand may either have modest accuracy

requirements, or extreme accuracy requirements, and may or may not be readily avail-

able for transmission. For example, the alpha spectrometer outputs are discrete

256 bit words available only afte_ either a two hour (background count) o k an eight

hour (prepared sample) operation. The scientific atmospheric properties experiments

are continuously available, and only eight bits of data are collected per sample.

The engineering data may be termed "routine" data and can be conveniently for-

matted (grouped) into modes of operation, landed day and landed night. The science

data may also be grouped into periodic science data or aperiodic science data. The

periodic science data collected in a clearly identifiable routine, and usually

accumulates modest amounts of data. The ==day/night;; mode occurs when the instru-

ments are energized once every 15 minutes. The"sunrise/sunset" mode occurs when the

instruments are energized once each minute. During each mode only eight bits per

sample are taken. Aperiodic science is characterized by the lack of periodicity

in the collection scheme, and the massive accumulation of bits per measurement.

For example, two 2.16 x 106 bit television pictures are planned to be taken in the

"morning", and five 0.96 x 106 bit television pictures in the "afternoon".

In addition to the character of the data (accuracy and collection rates) the

collection periods are also variable. The collection periods are generally also

related to the local time of day although some will be programmed in absolute time

from touchdown. The television pictures will be taken at optimum shadow times

(morning and evening) which are a function of the landing longitude. Proper picture

taking times must therefore be programmed, dependent upon the planned landing longi-

tude.

Another significant factor of the science data is the peak rate of accumulation.

The highest peak rates are clearly in excess of the normal transmission capability,

300 or 600 bps in the clock track mode and 1200 bps in the autotrack mode. A single

low resolution panoramic image, 2.16 x 106 bits, is taken in a four minute interval,

resulting in a 9 kbps data rate. The high resolution images are taken at a 12 kbps

rate for 80 seconds. Consequently, the data must be buffered and stored to adjust

to the transmission llnk rates. Figure 5.4-53 illustrates a typical data accumula-

tion and transmission history.
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Data Control Requirements - The data control requirements fall into two inter-

related groups. There is that group which is concerned with the instruments per se,

and a group which is concerned with the recording and transmission of data.

The data control of the engineering measurements is straightforward as each

instrumentation sensor output is always available for monitoring. Data control of

the science measurements is more complex; first the instrument must be turned ON,

second it must "prepare" a measurement, and finally at the appropriate time the

measurement data must be collected. The measurement taking capability must be

flexible in order to exploit the capability of the transmission systems. Experiment

control is thus divided into two functions: (a) on/off and mode commands, and (b)

subsequencing. Subsequencing concerns those commands that the experiment requires

to perform the job, once the on and mode commands are given. Within a mission the

instrument on/off controls must remain flexible. The internal instrument sequencing

need not be alterable after launch.

The data handling subsystem mustalso _ontrol data recording and transmission rates.

The data collection rates are defined from the experiment time line. From this

time line the DHS must control the data storage subsystem recording rates. A high

rate of data recording is necessary during the periods of visual imaging (9 or 12

kbps), while a low rate is necessary at other times (approximately i0 bps). The

transmission rates are established by the pointing accuracy of the high gain antenna.

The information for rate control is outside the DHS sensing capabilities. However,

since the DHS must control the transmission rate, this information must be fed into

the system. Rate control data may be derived from either the command subsystem or

the antenna Tracking _eceiver At the minimum pointing accuracy, ten hours would

be required to transmit all of the SL data, while only 2-1/2 hours would be required

at the highest pointing accuracy. Figure 5.4-54 summarizes the data controls required.

5.4.9.3 Configuration Analysis - The large quantity of imaging data as well as the

high data acquisition rates associated with this experiment dictate use of a tape

recorder. The inherent nature of a tape recorder imposes a number of restrictions

on the DHS interfaces and in some cases dictates a particular implementation. Read-

in data rates to the recorder must be relatively constant. That is, the recorder

will not accept the bursts of data generated by most VOYAGER science experiments.

This requirement for a constant tape recorder read-in rate leaves the telemetry/

data storage interface independent of this study. The questions that must be
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DATA CONTROLS

SOURCE

Visual Imaging

Atmo spheric Properties

Aipha Spectrometer

Gas Chromatograph

Metaboli sm

Growth

Subsurface Probe

Spectroradiometer

Soil Sample Acquisition

Engineering Data

MODES INTERNAL SEQUENCE

COMMANDS
I

12

4

4

I

4

3

3

2

5

0

OCCURRENCE RATE

2 pictures morning, 5 pictures afternoon

1/15 min, day/night; 1/1 min - sunrise/sunset

3-8 hr counts, 1-2 hr count

8-20 min, 4-100 min and 2-50 min

1-5hr insitu, 1-12hrrun

1-26 2/3 hr run

Same as atmos prop plus gas sample collection

1 continuous and 1-7 times per day

1-2 hr operation and 4-40 min processes

Continuous sensor operation, day and night mode
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addressed is how to best control data flow to:(a) provide these uniform rates to

the tape recorder and,(b) minimize interruptions of the data transmission to Earth.

Functional Interface Definition - The basic function of any telemetry system

is to format data into a coherent bit stream suitable for transmission. The VOYAGER

Surface Laboratory will produce relatively little engineering data

and large quantities of science data. The data must be interleaved such that none

of the engineering data is lost in the interleaving process. Thus, whatever configu-

ration is selected to perform the interleaving function, the telemetry subsystem

must have knowledge when bursts of science data are to be generated. Given this

information, the telemetry subsystem is also in a position to ensure that data buf-

fers do not overflow with the resulting loss of information.

Specifically, if a data buffer is about to overflow and the tape recorder is

in a dump sequence, the recorder can be stopped, the overflowing buffer read onto

tape, and the tape dump sequence restarted. Finally, the DHS configuration was

chosen to buffer non-imaging data during the might as well as during the

tape recorder dump. The stored data can then be placed on tape at the end of the

next picture taking interval. The data functional flow paths are illustrated in

Figure 5.4-55.

The logical approach to giving telemetry a knowledge of when bursts of science

data occur, and providing necessary control of data flow to and from storage, is

to place control of these functions in the telemetry subsystem. At a minimum, the

telemetry subsystem should provide on/off control of each science instrument and

format the resulting data into storage. Since many instr,aments have multiple opera-

tional modes (each producing data in different quantities and formats), the telem-

etry subsystem would also logically control mode selection. Several science instru-

ments require command signals in addition to simple on/off controls to sequence the

instrument through a given experiment cycle. These commands (referred to here as

subsequencing commands) could be generated by the telemetry subsystem via the science

data subsystem or by the science data subsystem itself.

The choice here is deferred to a later portion of this study. In any case the

gross on/off and mode selection control should be generated by the telemetry sub-

system and routed to the science instruments via the science data subsystem. The

telemetry should also control data flow within the DHS and perform formatting as

data is placed in storage.
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DHS Implementation - The question of implementation is actually a problem of:

(a) how DHS programming is organized, (b) the degree of centralization of control

functions, and (c) the programming technique used. Two programming techniques

applicable to the VOYAGER SL are the hardwired concept and the stored program con-

cept. The hardwired configuration, comparable to the Mariner Data Automation System,

is attractive because of its simplicity, well understood techniques, and flight

proven reliability. Experience has shown, however, that severe penalties must be

paid for the inflexibility of the resulting system. There seems to be no way of

preventing changes in experiment definition from propagating through to other por-

tions of the DHS. The stored program concept (applied to telemetry) is relatively

new and is presently being developed primarily for military space applications. Be-

cause of its recent development status, the stored program concept has not yet

attained the full acceptance that hardwired systems have. Nevertheless, it is felt

that the need for flexibility in experiment definition and the requirement for

reprogrammable experiment sequencing necessitates stored program control.

The degree to which the controls are reprogrammable, however, is another ques-

tion. In a totally centralized programme_ the reprogrammable memory would contain

in core the entire formatting structure for both science and engineering data, the

on/off controls (sequencing time line), and all subsequenclng commands necessary to

sequence each science instrument through its experiment program(s). The approach

chosen for the SL DHS is to hardwire the data format tubes (see explanation of

interlaced tube formatting technique in Section 5.4.11 ), a_d

to store in core the switch addresses placed in the tube. This provides the flexi-

bility of a stored program while permitting graceful degradation. In this system ,

failure of a core will cause loss of data from only its associated switch. If the

formatting tubes were also stored, a single core failure could disrupt the entire

telemetry formatting technique and cause catastrophic failure. Similarly, science

instrument sequencing is partially stored program and partially hardwlred. The

sequencing time line (on/off and instr_ent mode selection) is stored in the telem-

etry core memory; the subsequencing commands however are, in general, hardwired and

unique to a particular instrument.

The remaining question ishow best to implement the science data subsystem

data acquisition and instrument subsequencing. The approach chosen is a modularized

technique whereby each science instrument has its own unique control unit.
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The control units or SDS Remote Interface Units, as they have been designated,

serve as interfacing devices between the SL telemetry subsystem and the science

instruments. Each RIU is designed to operate a single experiment (gather data and

generate subsequencing commands). It requires only on/off and a mode selection

commands from the telemetry progra_ner; after receipt of such a command the RIU,

without further assistance from telemetry, makes a complete measurement and trans-

fers the resulting data to temporary storage in the telemetry subsystem. This

permits modification of experiments with changes isolated to the RIU. Science

sequencing (time line) can be modified by changing the stored program. A summary

of the configuration analysis is presented in Figure 5.4-56.

5.4.9.4 Conclusions - Versatile telemetry and science data subsystems are required

for the SL data acquisition function. The functional interface between these sub-

systems consists of TM on/off control and detailed SDS experiment control. A

decentralized SDS, composed of RIU's for each experiment presents the best compromise

between performing all of the sequencing in either the TM or the SDS. This concept

limits the propagation of a change to a single RIU in the SDS and/or instructions

stored in an electrically alterable program in the TM. Executive control of science

measurements has been assigned to the telemetry programmer, which also controls the

gross data output format. The telemetry subsystem also contains the data buffer and

controls the flow of data both to and from the data storage tape recorder.
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TELEMETRY PROGRAMMER CONFIGURATION ANALYSIS SUMMARY

DESIGN AP PROACH

Hardwired

Hardwi red in struction s

with core storage for
addresses and controls

Stored program
instructions and

addresses

ADVANTAGES

• Flight proven

• Reliable

• Standard design

• Reliable operation
• Gate addresses and

sequence instructions

readily alterable

• Early design freeze

• Changes limited to

RIU or stored program

• Maximum flexibility

• Changes limited to RIU

or stored program

DISADVANT AGES

• Inflexible in operation

• Changes propagate thru system

• Requires reliable low temperature

memory read/write

• SIightly more power consumption

than hardwired system

• Contains single point fai lure modes
• Sensitive to shutdown transients

• Requires software development

• Most sensitive to temperature
environment
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5.4.10 Storage Device Selection - In the Surface Laboratory (SL), storage devices

are required for the multiplexer programmer, nighttime data acquisition, image data

acquisition, and buffering. A study was made of the devices available now and in

the near future. Selection was based on the best possible match between storage

devices and the requirements of each individual application, resulting in the

following:

Application

Multiplexer programmer

Nighttime data acquisition

Image data acquisition

5.4.10.1

Storage Device

Core memory

Tape storage

Tape storage

Buffering Core memory

Requirements - Functional requirements vary with the application and can

be summarized as follows:

Capacity: 40,000 to 60,000 bits.

Cycle time: 2 to i0 msec.

Random access.

Word size: multiple of 8 bits.

Non-volatile storage.

Non-destructive readout (overall system).

Electrically alterable.

Nighttime Data Storage

Capacity: 250,000 to 500,000 bits.

Serial input: _ i0 bps (variable).

Serial output: _ 1200 bps (variable).

Mass Storage

Capacity: 106 to 108 bits.

Readout rate: 1200 bps, 200 bps.

Read in rate: 5,000 to i0,000 bps.

Buffers

Capacity: i00 bits to I0,000 bits.

Input rat_ 3300 bps.

Output rat_! 1200 bps.
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All devices must meet the environmental requirements including sterilization

temperatures and radiation. They must be highly reliable to prevent compromise of

the SL mission success. In addition, weight, volume and power must be minimized.

5.4.10.2 Design Approaches - The devices considered for the SL telecommunications

applications were: semiconductor memories, static magnetic memories, and dynamic

magnetic memories. Read - only memories (e.g., transformer or capacitor memories)

were not considered since all applications require electrically alterable storage.

5.4.10.2.1 Semiconductor Memories - Two types of semiconductor memories were

considered: bipolar translator and MOSFET arrays. The major disadvantage of

these memories is their volatility. However, for small scratchpad memories they

may be acceptable.

Individual arrays of monolithic bipolar flip-flops are presently available in

9-bit and 16-bit capacities. With addressing electronics, the power requirement is

about 20 mW per bit. A small array ot this type, has been reported. It has a

capacity of four 49-bit words on a single monolithic chip, 60 x 80 mils in size,

placed in a 16 lead package. These units have been interconnected into larger

arrays providing a complete memory having a 256 word, 72 bit capacity with a 150

nanosecond write cycle time.

In the MOSFET memory, field effect transistors are connectedeither as

fllp-flop elements or as charge storage elements. In either case the circuit

impedances are high, resulting in lower power requirements and a slower operating

speed than for the bipolar arrays. At the present time 100-bit shift registers

are available on a single chip, with the promise of larger arrays to follow. The

holding power of MOSFET arrays is very small. Present power requirements are

100 microwatts per bit for the memory cell and 200 microwatts per bit for the

complete memory.

5.4.10.2.2 Static Magnetic Memories - The static magnetic memories studied were:

magnetic core, plated wire and etched permalloy. Multi-aperture devices were not

included because of their greater size and write-power requirements, and lack of

significant advantage over cores for the SL application.

Magnetic Core - Magnetic core memories consist of individual discrete

toroidal magnetic cores strung on conductive wires to form planar arrays, storing

a single bit of information per core. There are three major core memory organiza-

tion arrangements, referred to as 2D, 3D, and 2-I/2D. The 2D memory is character-

ized by the simplest conductor threading pattern. Its advantage is comparatively
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high operational speed. The 3D memory is characterized by a larger number of

conductors threading each core; but the core selection electronics is reduced over

that required for 2D at the price of slower operating speed. The 2-I/2D

organization attempts to combine the best features of both the 2D and 3D memories,

i.e., minimize core selection electronics while maintaining high operating speeds.

The efficiency of the 2D organization is low for small words (less than

I00 bits). For small words, and memories of less than 8,000 words, the 3D organiza-

tion is most efficient. For larger memories, 2-I/2D organizations hold the advantage.

Some of the outstanding characteristics of the magnetic core memory are as

follows:

o Packing density is approximately 500 bits per cubic inch for memories

(including electronics) up to 105 bit capacity. The density increases to

5,000 bits per cubic inch for larger memories. The present limit is

IU OlES.

O Memory organization provides for random access and is thus suitable for

serially acquired data.

o Readout is non-destructive (with normal re-write cycle) and data is

maintained in the event of power failure.

o Cycle times range from 600 nanoseconds to i0 microseconds.

Plated Wire - A more recent development than the magnetic core memory is the

plated wire memory. The basic memory element consists of a segment of plated

magnetic material surrounding a conductive wire. A continuous wire plating process

results in a continuum of these memory elements along the length of the wire. The

plated wire memory plane is similar to a 2D or word organized memory utilizing

magnetic cores. However, it differs in that the plate itself may provide either

Destructive Readout (DRO) or Non-Destructive Readout (NDRO) depending on the

amplitude of the drive current during reading. The plated wire memory falls in

the category of thin film memory systems, and represents the most practical form

of thin-film memory to date.

There is some evidence to indicate that, in the NDRO mode of operation, data

will eventually be lost due to the effects of the magnetic film. This has been

observed after approximately 106 readout cycles of a previously stored data word.

However, this problem is not encountered in the DRO mode because of the normal

re-write cycle. An additional disadvantage in the use of plated wire memories for

a spacecraft is that memory planes are sensitive to shock and vibration. Therefore,

plated wire memories are not attractive for the SL application.
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Etched Permalloy - The etched permalloy memory is another recent approach to

the batch fabrication of large capacity, low cost memories. This type of memory

is noteworthy because of its low power requirements, low weight, and small size.

Although not as fast in operation as either ferrite core or plated wire memories,

the etched permalloy memory becomes most attractive in the range of 106 bits and

higher.

5.4.10.2.3 Dynamic Magnetic Memories - A tape recorder is the only dynamic

magnetic memory considered for the SL application. There are three types of tape

recorders to be considered: coplanar reel-to-reel, coaxial reel-to-reel and

endless loop. The endless loop configuration is limited in capacity and information

rate, which disqualifies it from consideration for the SL.

The two reel-to-reel configurations are quite similar in performance and both

can meet the SL mass storage requirements. The choice of configuration should then

5.4.10.3 Configuration Comparison - Figure 5.4-57 illustrates the range of

application of various types of memories for various memory parameters, as a

function of memory capacity. The four parameters, power, weight, volume and cost

have been plotted. In addition, an "overall average" has been estimated based on

the application ranges for the power, weight, volume and cost. Addition of other

criteria or constraints such as a requirement for a non-volatlle storage, or

random access, might shift the range or eliminate a configuration. However, the

"overall average" is a good measure of memory applicability.

The "overall average" indicates that in the range below 200 bits, semi-

conductor memories are preferred. In the range from 200 to 105 bits, the magnetic

core approach is most advantageous, and in the range from 105 to 109 bits, magnetic

tape is the best approach. In the large capacity category, etched permalloy

cannot compete with magnetic tapes because of size and weight.

5.4.10.4 Recommended Design Approaches - The criteria for selection of the memory

technique for the various applications are (in order of importance): meets

functional requirements, reliability, power, weight, volume, environmental

characteristics, and cost.

Stored Program Memory - The required bit capacity of 40k to 60k bits for the

Stored Program Memory falls sufficiently below the 105 bit crossover point on the

Comparison Chart to clearly favor the use of core memory. Also, the requirement
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for random access precludes the use of a tape memory. The very small cycle time of

i0 msec and the 8-bit word results in a power consumption for core memory

considerably less than one watt. The additional requirements of non-volatility of

storage and non-destructive readout are also met by the core memory.

Electronic Memories, Inc., under JPL direction; has recently made a study of

the effect of sterilization, at both 135°C temperature and ETO, on core memory

components. All memory components survived both types of sterilization. Although

the complete memory system was not tested, the survival of the components indicates

that the core memory is sterilizahle by either method.

Nighttime Data - The requirement of 250k to 500k bit capacity argues for tape

memory. Since there is no requirement for random access, the tape choice is

sufficient. The very low input bit rate of i0 bps allows the recorder to be

stopped and started to accommodate intermittently available data. The limit ratio

between I , • , •p±myom_ m_ _ecora rates is 120:1, which may necessitate the use of

separate record and playback heads, a normally available optional feature.

Several tape recorder manufacturers have given assurances that tape recorder

mechanisms and drives which will survive the sterilization temperature are available.

Also, Memorex has developed, under a NASA - Goddard contract, a Kapton magnetic

tape which will survive 145°C non-operating and operate at 150@F. This tape is

now in pilot production.

_ass Storage - A large bit capacity in the range of 106 to 108 bits

definitely requires tape storage. The low record and playback rates of up to

1200 bps can be accommodated on a single track.

Buffers - The only candidates suitable for buffers are semiconductor memories

and core memories. Even at the low storage requirement of i00 bits the power

requirement makes semiconductor memories only marginally suitable, and power

consumption would become prohibitive at 104 bits. The two candidates are comparable

in terms of weight and volume. There is a clear cut choice in favor of core memory

in the cost category. The final choice is thus core memory.
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5.4.11 Multiplexing Techniques - This section presents a summary of alternate

multiplexing techniques considered for use in the SL Telemetry Subsystem. As used

in this section, the term multiplexing includes the functional operations of gating,

decoding and channel sequencing (programming). Due to the dependence of the Data

Handling System (DHS) configurations (see section 5.4.9) upon the multiplexing

technique employed, multiplexing trade studies were performed for each DHS configura-

tion under consideration (hardwired, hybrid and multiprocessor). Since the DHS

configuration trade study resulted in the selection of the hybrid configuration

for the baseline system, the multiplexer trade studies for the hardwired and multi-

processor configurations are only summarized briefly, with the major emphasis placed

on the hybrid configuration. Reference 5.4-21 requested that

absolute rate commutation be considered. Two methods of absolute rate commutation,

the burst and strobe methods,were considered. The burst method requires a buffer

and is compatible only with the burst tube method of programming and a stored-

program multiplexer. The strobe method has the disadvantage of great programming

difficulty with resultant lack of flexibility. Therefore these absolute rate

commutation methods were not included in the multiplexer trade studies.

5.4.11.1 Multiplexing Trade Study for Hardwired DHS - Three multiplexing techniques

were evaluated for the hardwired DHS configuration: ring counter, matrix programm-

ing and interlaced tube. The ring counter and matrix programming techniques have

been used in past and present systems. The interlaced tube programming method, a

relatively new technique, is described in Section 5.4.11.3.

Criteria used for hardwired DHS multiplexer trade-offs were reliability,

physical parameters (size, weight, power, etc.), performance and flexibility, in

order of decreasing importance. The trade-off study indicated that the matrix

programmer was best in all categories except performance, where the interlaced tube

method provides a somewhat better sample efficiency. The ring counter method was

found to rank lowest in all categories.

As a result of this trade study the matrix programmer was selected to repre-

sent the hardwired system in the DHS configuration trade study.

5.4.11.2 Multiplexing Trade Study for Multiprocessor DHS - The programming techni-

ques evaluated in the multiplexer trade-off for the multiprocessor DHS configuration

were multi-access, threaded-list, interlaced tube and burst tube programming in

conjunction with delta-tree encoder, analog pulse-width conversion and random select

gate sampling methods. The random select gate was found to be the best sampling

method for all of the programming techniques studied.

5.4-130
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Since physical, reliability and performance factors are insensitive to the

programming technique used with the multiprocessor, the criteria used for trade-

off were sample efficiency, average processor instruction rate and storage require-

ments, in order of decreasing importance. The results of the study indicated that

the interlaced tube requires the least amount of storage and the lowest instruction

execution rate, while running a close second to the burst tube method in sample

efficiency. Therefore, the interlaced tube technique would represent a multi-

processor DHS configuration.

5.4.11.3 Multiplexin K Trade Study for Hybrid _ - In the hybrid DHS configuration

the multiplexer programmer is a stored program sequencing unit. As a result of an

optimization study (Reference 5.4-22) random-select FET analog gates were selected

for use with the stored-program sequencing. Therefore, the difference between the

techniques discussed below is confined to core storage and channel address logic.

The three programming techniques evaluated for the hybrid DHS configuration are

multiple access, table look-up and interlaced tube.

Multiple-Access Program - The multiple-access programming technique has been

used predominately in stored-program decommutator stations and recently has been

adopted for the Titan III and Poseidon PCM telemetry systems. This technique is

easily implemented and efficient in core utilization. The multiple-access termino-

logy is derived from the need to access memory two or more times for all subcommu-

ration frames (i.e., flrst-level subframes require two memory accesses; second-level

sub-subframes require three memory accesses, etc.).

One additional flag bit per memory word is required to indicate when the con-

tent represents a subframe memory location rather than a channel address. A

special memory-position index number is used at the end of each frame to reset the

subframe instruction in the appropriate higher-level frame. Some scratchpad is

required for storage of the pointers for each rate group. Core memory programming

is easily accomplished by listing channel addresses and index number in order of

sequence and sampling frequency.

Look-Up Table Program - The look-up table program technique is the simplest

form of stored-program sequencing in terms of logic operations but requires large

memory capacity. Programming is achieved simply by listing all channel addresses

in order of major frame sequencing, repeating channel numbers as required until

the major frame is complete.

Storage capacity is determined by the length of the major frame which is the

product of the maximum frame lengths within each commutation level, assuming that
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all fr_es within a given subco_utation level are even multiples of the longest

frame within that level. If this condition is not met, it will be necessary to take

the product of all frame lengths within the multiplexing patteR. Under such con-

ditions, the major frame length can exceed the time duration of the lowest rate

subframe. In any case, memory required to satisfy the SLS multiplexing is extremely

large using this technique.

Interlaced T_e Program - The interlaced tube progra_ing technique is similar

to the multiple-access programming technique described _ove since it also requires

scratchpad and special index instructions. Figure 5.4-58 is an illustrative ex_ple

of an arbitrary multiplexing fo_at produced by the interlaced t_e. _e constuc-

tion simplicity of these fo_ats is clearly evident. For purposes of this descrip-

tion, a major fr_e represents the total number of samples required to sequence

through all data sources and a minor frame is the least number of s_ples required

before a data source is repeated (dete_ined by the highest s_pling frequency

within the data ensemble).

The interlaced-tube fo_at is constructed by first listing all measurements

in groups (tubes) of descending s_pling frequency, as sho_. The number of major

frame samples, Smf, is dete_ined by:

z__rmax ( )
Smf = _ Nr r

rmin
rmin

where r = sampling rate of a given rate group

N r = number of samples in the rth rate group

rmin = lowest sampling frequency

rma x = highest sampling frequency

The number of prime frame samples, Spf, is:

SPf = Smf I rmin_rmax

The system sample rate in sps is, of course, Spf (rmax). If the minor frame

is not an integer number of samples, spare channels must be added in any desired

combination to meet this requirement. Although this constraint is similar to other

multiplexing techniques, it should be noted that the interlaced-tube procedure

generally requires fewer spares, resulting in greater sampling efficiency. Under

no condition will it result in an efficiency lower than the other techniques consid-

ered.
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INTERLACED TUBE FORMAT EXAMPLE

÷ 50

0.1 sps

÷1 ÷5

32

5 sps

1 sps

Smf = 9000 Samples/major frame

Smf

Spf 500 18 Samples/minor frame

- I00

0.05 sps

Sample Rate -- 18 x 5 ---90 sps

,.-11

0.01 sps

Frame No. 1

Frame No. 2

Frame No. 5

Frame No. 6

Frame No. 500

A1, A2, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, Bll, B12, B13, B14, B15, B16

A1, A2, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, B32

A1, A2, B65, B66, B67, B68, B69, BT0, B71, B72, B73, C1, C2, C3, C4, C5, C6, C7

A1, A2, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, Bll, B12, B13, B14, B15, B16

A 1, A2, B65, B66, B67, B68, B69, B70, B71, B72, B73, E94, E95, E96, E97, E98, E99, El00
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i The channel sequence format produced by the tube method shown is generated as

follows:

!

I

I
I

I

I
I
I
I

I
I

I
I

I
I

During the first minor frame, the two 5-sps plus the first sixteen

l-sps channels are sampled. During the second minor frame, the two

5-sps plus pins 17 through 32 of the l-sps channels are sampled. During

the fifth minor frame, the two 5-sps and last nine pins of the l-sps

plus the first seven pins of the 0.l-sps channels are sampled. The

next five minor frames will be identical to the above sequence except

that pins 8 through 14 of the 0.l-sps tube will be sampled during the

tenth frame. This procedure continues until the five-hundredth

minor frame; at this time the last seven pins of the 0.01-sps tube are

finally sampled. The sequence then repeats.

Hybrid Stored-Program Trade-Off - The results of the hybrid system trade-off

dy Fig * .... oo_ _, _h= _=1,,=_nn _r_stu are presented _- ure 5. _ =n _^ ^_ _.

physical parameters, reliability, flexibility and performance. Reliability is

weighted the heaviest, followed by physical parameters (power and weight), perfor-

mance and flexibility in that order. The weighting factors used were 0.4, 0.3,

0.2 and 0.i respectively.

Due to inefficient memory utilization, the look-up table programming technique

suffers in physical and reliability grading. Although the identical logic algorithm

can be used for both interlaced-tube and multiple-access techniques, multiple-access

does require a few more words in storage (this difference is too small to be observed

in the grading numbers).

Because all addresses associated with the higher sampling rate groups are

repeated many times in the look-up table memory, programming of software changes

becomes considerably more difficult than with the other techniques. Programming

for the multiple-access techniques is slightly more complicated because of the

extra jump instructions required and can become considerably more complicated if

super-commutation (cross strapping) is required. Performance is confined to the

improved sampling efficiency of the interlaced tube. Look-up table is given a higher

ranking than multiple-access since it is possible to program the look-up table

with a tube format; however, programming would be further complicated.

Interlaced-tube programming is selected for the hybrid DHS configuration since

it is ranked highest under all criteria.

5.4.11.4 Reliability Considerations - Detailed reliability analysis of a commutator

design concept was conducted and methods determined by which the reliability can be

5.4-134
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maximized. The methods essentially consist of incorporation of a combination of

multi-channel cooperative and circuit block redundancies.

The basis for the analysis was elimination of critical single point failures,

improvement of fail-safe design features, and maximization of total and partial

probability of successful c.ommutator operation.

A generic PCM commutator and encoder design, shown in Figure 5.4-60, contains

the basic elements for operation and handling of High Level (HL), Low Level (LL),

BiLevel (BL) and Digital (D) groups of input data signals. The generic design

assumes a standard time division multiplexing method of sampling and gathering input

data signals for presentation to a transmitter modulator. All data switches were

assumed to be Junction Field Effect Transistors (JFET). Similar analysis utilizing

Metal Oxide Silicon Field Effect Transistors (MOSFET) could be conducted.

In the analysis, the 120 HL analog data channel group was analyzed and design-

ed as shown in Figure 5.4-61. The reliability of this design was estimated for

retrieval of total data, a subgroup (deck) of data and for an individual data channel.

A detailed reliability analysis of the generic design was conducted to optimize

the design reliability, as shown in Figure 5.4-62. This figure shows the optimum

arrangement of data channels which inherently contains multi-channel cooperative

redundancy and maximized probability of partial data retrieval. The analysis was

conducted as follows:

The basic JFET data switch was assigned a failure rate (f). All other elements

were assigned an effective failure rate expressed as some multiple of (f) for

purely comparative purposes. Different data channel arrangements were analyzed

and the comparative reliability was estimated for each arrangement. Results are

shown in Figure 5.4-63.

Limited circuit block redundancy, as shown in Figure 5.4-64, was added in the

most critical switching decks, namely decks F5, T5, and $5, in that order. This

addition optimizes total data retrieval probability at minimum expense of part

increases.

Summary - The reliability of a PCM Commutator data channel group has been

optimally maximized by incorporation of multi-channel-cooperative and limited

block redundancy and is the recommended design approach for the Telemetry Commutator.

The multi-channel-cooperative redundancy feature essentially decentralizes the

first level of analog data switches for optimum reliability and data switch inde-

pendence in event of any switch failure. Further decentralization from that shown

in Figure 5.4-62 however reduces probability of partial and total data channel
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HIGH LEVEL ANALOG SIGNAL GROUP

J T
I

_J

o-1

Sl0 ]

T

To Analog - Digital Converter

Note s :

1. H10- First Level Switch Deck (Subgroup) containing 10 Analog Switches.

2. $10 - Second Level Switch Deck containing 10 Analog Switches.
3. SD1 (Switch Driver) Drives all switches in Subgroup H10.

4. Another SD1 drives the first position switch in Deck $10.
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Figure 5.4-62
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GENERIC DESIGN _

10 Channel s/Subgroup

6 Channels/Subgroup

15 Channel s/Subgroup

8 Channel s/Subgroup

12 Channe Is/Subgroup

10 Channe Is/Subgroup

5 Channel s/Subgroup

5 Channels/Subgroup

5 Channe Is/Subgroup

NOTE:

HIGH LEVEL ANALOG DATA GROUP RELIABILITY SUMMARY

GROUP

235f

248f

245f

238f

237f

264f

315f

271f

<235f

SUBGROUP

204f

201f
221f

201f
210f

148f

107f/5 Channel s

214f/10 Channels

65f/5 Channel s
130f/10 Channels

65f/5 Channels

< 130f/10 Channels

CHANNELI

78f

91f

82i

82f

78f

68f

60f

34f

<34f

REMARKS

First level data group divided into

independent halves

iFirst level data group divided

i into independent fourths
Redundant F5 and T5 analog switches

switch drivers and programmer sequencers

Redundant $5 analog switches,

switch drivers, and programmer

sequencers

1. (f) Values for the last three design configurations are cumulative and represent the optimum

design approach.

2. As the (f) values are decreased, the reliability is increased exponentially.

3. If is equivalent to an analog switch failure rate.
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COMPARISONOF BASICANDREDUNDANTCIRCUITRY

I (a) JFET ANALOG SWITCH AND SWITCH DRIVER

I Analog Data In _ _ Analog Data Out

I o

I

I

I Control
Gate

(Timing Pulse) <_ _ Note: JFET- Junction Field

I Effect Transistor11
I (b) REDUNDANT JFET SWITCHES AND REDUNDANT SWITCH DRIVERS

Analog Data In I ! _ Analog Data Out

I D S D

I
÷V

Control Gate

(Timing

Figure 5.4-64
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retrieval for the 120 data channels considered.

5.4.12 Instrumentation - The term "Instrumentation Equipment" is used to designate

the engineering measurement portion of the telemetry system where the engineering

data signals are sensed and conditioned to outputs compatible with the PCM encoders.

This equipment consists of transducers, signal conditioners, and associated power

supplies.

5.4.12.1 Transducers - The major portion of the SLS engineering measurements

requiring transducers can be classified in three categories; temperature, pressure

and motion.

Temperature Measurements - Preliminary requirements for 37 SL and associated

subsystem temperature measurements have been established per the SLS Instrumentation

List. The temperature ranges are from a low of -200°F to a high of 200°F in five

overlapping spans. The specific temperature measurement requirements are shown

below.

SLS Temperature Measurement Requirements

Temp Range Span No. Measurements

0 to 120°F 120°F 4

25 to 150°F 125°F 6

-i0 to 150°F 160°F i

-50to 200°F 250°F 8

-200 to 150°F 350°F 18

Total 37

All the temperature monitoring points are located on equipment, components, or

structures. Surface type temperature sensors that can be attached to variety of

surface contours and shapes are therefore required. Thermistors, platinum re-

sistance sensors, and thermocouples are likely candidates. Platinum resistance

sensors in a conventional wheatstone bridge arrangement are preferred for the

temperature measurements in these ranges, for the following reasons:

o Superior R-T characteristics for wide temperature span. Typical span is

-326°F to 1000°F.

o Excellent stability of calibration. The interpolation instrument that is

used from -182.97°C to 630.5°C on the International Temperature Scale is the

platinum resistance thermometer.

o Higher output voltage than thermocouples.

o Control of output voltage/degree exactly as desired over wide temperature

limits by adjustment of excitation current or by bridge design
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o Reference junctions not required

o Ease of calibration (only small number of calibration points are required).

Alternate bridge designs were also investigated. There were the full bridge,

half bridge and the Mariner C single ended configurations. The full bridge and

half bridge are shown in Figure 5.4-65. The full bridge method is the preferred

approach, because the common mode noise signals picked up by the lead wires are

rejected by the differential amplifier in the low level commutator and lead wire

voltage drop errors are minimized. Computer calculations for bridge designs for

typical SLS temperature ranges were contributed by Rosemount Engineering Company

and appear in Figure 5.4-66. The main considerations in the design are minimum

power consumption and linear 0-40mV output using a sensing element Ro value as

high as practical without introducing self-heating error. Power consumption is

under 2 mW for the ranges shown. Using wire-wound, 5 ppm/°C bridge completion

resistors, the temperature coefficient effects were calculated and found to be

negligible.

Pressure Measurements - Eight pressure measurements are presently required to

monitor the SLS thermal control equipment pressures. The pressure range required

is 0 to 15 psia. Six types of pressure transducers were considered as being po-

tentially capable of meeting the VOYAGER requirements. The types are potentiometric,

bonded gage, unbonded strain gage, variable reluctance, capacitive or LVTD type.

Of these, the potentiometrlc type is preferred for the following reasons.

o Lowest power consumption for 5V output (.25 mW)

o No amplifier required.

o Relatively low cost.

o
Simplicity and reliability.

o Lowest weight.

5.4.12.2 SiKnal Conditioners - The more complex SLS signal conditioning required

includes dc current monitoring and pyrotechnic current pulse detection.

Current MonitorinK - Eight dc current measurements are presently required in

the SLS power subsystem. The ranges are 0-2A and 0-5A.

The two methods considered for monitoring dc current were, calibrated shunts

with amplification by the telemetry low level dc amplifier, and an individual

magnetic amplifier for each measurement. The shunt method results in a savings in

weight and overall power consumption. The disadvantage of this method is that

accuracies are poor near the zero point. To a lesser degree, this is also true of

the magnetic amplifiers. Shunt monitoring is capable of meeting the accuracy
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TEMPERATURE MEASUREMENT METHODS
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I FULL I E OD Cs_tuth;°r

I
' I

, i
I o I

! ,
Common ,1, ,.L, "[0-40 mV o

HALF BRIDGE METHOD

Commutator

Switches
Differential

Am pl ifi er

E
C)

Figure 5.4-65
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TEMPERATURE SENSOR CALCULATIONS

I
R4 "

' _ ------- + Input

I
!

(_ m 1 _ + Output
400_ -------- - Output

Typical
RO Valve R0 R 3

_ - Input

Schematic Diagram

TEMPERATURE BRIDGE RESISTANCE VALUES IN OHMS POWER TEMPERATURE COEFFICIENT

RANGES (°F) R3 R2 R4 R 1 REQ. EFFECTS

-200 ° to +150 ° 200 8,380 15,000 7,956 1.3 mW 4.62 x 10-7 volts

- 50° to +200 ° 300 9,361 7,500 10,201 1.99 mW 6.08 x 10 -7 volts

Input Required: 5 volts

Output: 0-40 mV
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requirements and will be used for the battery load current measurements. Magnetic

amplifier type circuits will be used for battery charge current measurements, where

greater accuracy and circuit isolation are needed. The weight and power savings of

using shunts as compared to individual magnetic amplifiers are approximately

1.5 ibs. and 2 watts.

Pyrotechnic Current Pulse Detector - The detection of a firing current pulse

is required for each of 20 squib cartridges in the pyrotechnic subsystem. Safety

considerations prevent a hardwire connection to the pyrotechnic firing circuits.

The current pulse can be monitored by a current transformer with a hole through which

the return leg of the squib wire may pass. Detecting a current pulse is a less

complex problem than monitoring current, since the current pulse is dynamic in

nature. This eliminates the need for magnetic amplifiers and other associated

circuitry necessary for dc monitoring. Figure 5.4-67 is a block diagram of a

current pulse detector. Tne pulse transformer is fabricated in the form of toroid

in such a manner that a single turn of the pyrotechnic lead wire is sufficient for

pulse detection. The amplifier magnifies the pulse and provides a impedance match

between the transformer and the level detector. The level detector is adjusted

so that spike amplitude and spike energy are combined to give the necessary signal

required to make the telemetry flip-flop change states. The flip-flop retains this

information until sampled by the commutator.

5.4.13 Aliasing Data Compression - The SLS baseline telemetry subsystem does not

include data compression. However, we have studied its feasibility to enhance

subsystem performance by providing higher tolerance to the effects of uncertain

environmental factors, and it seems an attractive alternative. System design and

operation can be described as follows:

A typical instrumentation list defines the sample rate requirements, based on

expected vehicle performance in an assumed environment. If these sample rate require-

ments are underestimated, significant measurement errors may be introduced; on

the other hand, if the sample rate requirements are adequate, sampling at higher

rates would result in unnecessary data transmission.

In the SL data system multiplexer sampling rates would be increased to about

ten times the required rate. The data compressor separates those samples which

would have been provided by a lower-speed multiplexer, and sends them on without

modification. An appropriate compression algorithm (probably First-Order Inter-

polation) is applied to the remaining samples. If the original sample rate require-

ments are adequate, the compressor produces no additional data. If any requirements
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are inadequate, the compressor stores additional samples of excessively active

channels for subsequent transmission.

By increasing the communication link capability about 10%, the data compressor

output frame format would include all required data samples, followed by an addi-

tional 10% of compressed data samples. For example, if the required sample rate

were i00 sps, the compressor output would be ii0 sps (the first i00 time slots being

the required samples and the last i0 containing any excess samples produced by the

compression algorithm). Thus, if the highest per-channel sample rate required were

1 sps, at least ten channels could be adaptively increased to 2 sps; similarly one

channel could be sampled at i0 sps. If the duration of the excessive activity is

limited, or if the channel activity is not too excessive, even greater adaptivity

can be expected.

Reliability - The calculated data compressor failure rate is about 2.81% per

performing similar operations. Obviously, this reliability figure can vary as a

function of the compressed data store (buffer) capacity but it is not likely to

become a poor risk item. If the multiplexer is designed to operate at both the

required sample rates and an order of magnitude faster, the data compressor could

be bypassed by ground command any time prior to FC separation.

Conclusions - Aliasing data compression is attractive for the SL TM system

because it provides a tolerance to the environmental unpredictability and since the

data compressor power consumption (due primarily to core memory storage) is quite

low. It is not included in L_...........DaS_IL_ because .....__o_pre_sio_s 'i_ve _iot beeL1

verified by simulation and because a specific hardware implementation has not been

formulated. We feel that once these steps are completed, aliasing compression will

be a high-value candidate for inclusion in the TM system.

REPORT F694,VOLUME III • PART B ,31 AUGUST 1967

MCDONNELL ASTRONAUTICS

5.4-148



I

I
I

I

I
I

I
I

I
I
I

I
I

I
I

I

I
I

REFERENCES

5.4-1 Mars Mission Communication Analysis, Philco-Ford Corporation, TR2531.

5.4-2 Boeing/Philco Final Technical Report, "VOYAGER Spacecraft System, Volume

A, Preferred Design for Flight Spacecraft and Hardware Subsystems, Part

II, Report No. D2-82709-I," The Boeing Company, July 1965 (VOYAGER study

performed for JPL).

5.4-3 I. M. Jacobs, "Sequential Decoding for Efficient Communication from Deep

Space," UCSD 1932, September 30, 1966.

5.4-4 G.D.Forney,Jr.,"Concatenated Codes," MITRes. Lab. of Elec., TR-440,

December i, 1965.

5.4-5 Dozencroft, J. M. and Jacobs, I. M. "Principles of Communications Engineer-

ing", Pg. 436, J. Wiley and Sons, 1965

5.4-6 Stiffler, J. J., "The Squaring Loop Techniques for Binary PSK Synchroniza-

tion," JPL-SPS No. 37-26, Vol. IV.

5.4-7 Lindsey, W. C., "Phase Shift Keyed Signal Detection with Noisy Reference

Signals," IEEE Transaction on Aerospace and Electronic System, Vol. AES 2

No. 4, July 1966, pp 303-401.

5.4-8 Bustamante, H. A., "Optimum Distribution of Power in a PSK Telemetry System,"

Philco-Ford, VOYAGER Capsule Memo VC-135, November i0, 1966.

5.4-9 Goldstein _ad Kendall, "Low Data Rate Telemetry" pp. 501-506. Proceedings

of the American Astronautical Society, Symposium on Unmanned Exploration of

the Solar System, February 1965.

5.4-10 A. J. Viterbi, "Error Bounds for M-ary Orthogonal Communications Using

Stationary Stochastic Signals", JPL-SPS 37-37 Volume IV, pp 262-268.

5.4-11 F. J. Charles and N. P. Shein, "A Preliminary Study of the Application of

Non-Coherent Techniques to Low Power Telemetry" JPL-TMNo. 3341-65-14,

November 15, 1965.

5.4-12 A. J. Viterbi, "Performance of an M-ary Orthogonal Communication System

Using Stationary Stochastic Signals," IEEE Transactions on Information

Theory, July 1967.

5.4-13 M. J. Ferguson, "Low Data Rate MFSK Using a Slowly Varying Frequency

and Constant Phase Signal", VOYAGER Internal Memo, VC-209, Philco-Ford

SRS, May 1967.

REPORT F694. VOLUME III , PART B • 31 AUGUST 1967

MCDONNELL ASTRONAUTICS

5.4-149



,il

,I

l
I

I
I

I

I
I
I
I

I
I

I
I

I
I

I

5.4-14 Viterbi, A. J., "MFSK Analysis", Submitted to Philco-Ford.

5.4-15 Greenspan and Chesler, "Application of Statistical Principles to the

Detection of Weak Signals in Gaussian Noise", Res. Report N-456,

Sylvania Applied Research Lab, Waltham, Mass., 31 March 1967.

5.4-16 M. J. Ferguson, "VOYAGER Surface Laboratory Trade Study on the Optimum

Receiver Configuration for the Detection of Low Data Rate MFSK," VOYAGER

Internal Memo VC-277, August 1967.

5.4-17 "Single Channel Cross Multiplier Spectrum Due to Input Noise," by

R. E. Frary, JPL-TM-3341-65-9, June i, 1965.

5.4-18 Spilker, J. J., "Delay Lock Tracking of Binary Signals," I.R.E. Trans.

on Space Electronics and Telemetry, Vol. SET-9, March 1963, pp 1-8.

5.4-19 Kraus, J. D., Antennas, McGraw-Hill Book Co., 1950.

5.4-20 D. Haccound, "Simulated Communication with Sequential Decoding and Phase

Estimation," S. M. Thesis, Department of Electrical Engineering, Massachu-

setts Institute of Technology, Cambridge, Massachusetts, September 1966.

5.4-21 1973 VOYAGER Capsule Systems Constraints and Requirements Document -

Revision 2. Jet Propulsion Laboratory, Pasadena, California, 12 June 1967.

5.4-22 "Review of Alternate Multiplexing Techniques", Philco-Ford Corporation,

VOYAGER Capsule Memo VC-186.

REPORT F694 • VOLUME III • PART B • $1 AUGUST 1967

MCDONNELL ASTRONAUTICS

5.4-150


